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ABSTRACT

Compression and denoising are two of the most successful
applications of wavelets to signals and natural images. Both
techniques have also been successfully applied to seismic
signals, but compression is not widely accepted yet, since it
is often believed to harm seismic information.

Trying to look at compression and denoising in another
direction, the present work stresses on the idea that they
could be viewed as two sides of the same coin. As a re-
sult, in the case of naturally noisy seismic data, compres-
sion could be seen as a denoising tool, instead of a mere
noise source. We subtantiate this statement on a noise-free
seismic data model and actual seismic field data.

We show that, depending on the amout of initial ambient
noise in the data, a lapped transform coder with embedded
zerotree coding may be able to effectively denoise seismic
data, over a wide range of compression ratios.

1. INTRODUCTION ON SEISMIC DATA
COMPRESSION

Modern large scale 3-D seismic surveys may generate hun-
dreds of Terabytes of data. Seismic data compression has
already been experienced to reduce complexity in the man-
agement of these ever increasing amounts of data, for in-
stance in vessel-to-base satellite transmission or to reduce
memory requirements or storage costs [1, 2].

Unfortunately, seismic compression needs usually ex-
ceed 10 to 1 compression ratios (CR). Moreover, higher
compression ratios (up to 100 to 1) are highly desirable, but
they can only be achieved through lossy compression.

Audio signal or image lossy compression generally rely
on psycho-acoustics or psycho-visual knowledge to hide the
compression induced noise, so that the actual information
loss is barely perceptible.

Such techniques cannot apply simply to seismic data:
”raw” seismic data undergoes complex processing steps be-

fore they can be interpreted as a ”cross-section” of the un-
derlying ground. Seismic data properties change – some-
times radically – through each of the processing steps, in-
cluding signal stretching, time of arrival correction, decon-
volution, inversion, : : : The ability to extract the maximum
possible information from each seismic dataset is often cru-
cial to 3-D seismic processing. As a result, the seismic com-
munity is still reluctant to using compression techniques,
and no seismic compression standard exists to date.

In order to promote compression, several studies have
been carried out to show that, at least at low CRs, the com-
pression noise is almost safe to subsequent processing [1, 2,
3]. One of the most interesting studies has been released in
August 2001 to the Seismic Compression Diagnostic Initia-
tive (SCDI), formed in 1997 to address the effects of com-
pression on seismic data interpretation, and to provide (if
possible) safe compression diagnostics. Because of the com-
plexity of geophysical requirements, the SCDI Consortium
did not reach to a compression standard or universal rules,
but instead provided useful guidelines for nearly safe com-
pression [2].

Since seismic data inherently contains ambient noise,
and compression (at low CRs) should add nearly random
noise to the data, compression might be relatively safe if
the compression noise is significantly lower than the ambi-
ent noise, and if the noise exhibits the appropriate statistical
properties (e. g. gaussiannity, whiteness, : : : )

The definition of a safe compression noise threshold for
all kind of seismic data was not given, but it was observed to
be dependant on the type of data, the level of ambient noise
and the processing stage at which one decides to compress
the data.

In the present work, we try shed another light on the fol-
lowing canonical point of view, as quoted from [2, p. 28]:
”... from the point of view of seismic data processing, com-
pression does nothing useful”, which we partially disagree
with. The study was motivated by two somewhat related
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arguments:

� the idea that noises (ambient ones and from compres-
sion) just add might have been slightly overestimated,

� state-of-the-art coders are based on wavelets or filter
banks, which are basic tools for denoising, and could
thus serve two purposes at a time.

It was also motivated by a preceding joint work with
Tage Røsten, in which we investigated the superiority of
paraunitary and near-perfect multichannel filter banks on
wavelets for seismic data compression and denoising [4].

The paper is organized as follows. In Section 2, we
acknowledge previous works discussing the issues of com-
pression and denoising, from the seminal ideas of shrinkage
by D. Donoho et al. In Section 3 we explain why, with an
additive noise assumption, noises from the signal and from
compression do not necessarily add to a stronger noise. Sec-
tions 4 and 5 state compression/denoising results on model
data and actual seismic data respectively. We finally draw
conclusions and perspectives in Section 6.

2. ON COMPRESSION, DENOISING AND
SHRINKAGE

In the wavelet realm, compression and denoising might be
regarded as two sides of the same coin, via the concept
of ”shrinkage” or ”wavelet thresholding”. Following the
ideas of Donoho and Johnstone [5], numerous works have
emerged recently on non-linear techniques for signal de-
noising, esp. in the case of additive white noise. The basis
recipe for shrinkage is:

� transform a signal sn via e. g. a wavelet transform
into time-scale domain coefficients wn,

� discard some of the wn, termed as noisy coefficients,
according to one or several soft- or hard- thresholds,

� recover sn by the inverse transform.

After wavelet thresholding, data is generally transformed
back to the time domain. But if it is not, assuming the
indexes of the remaining wavelet coefficients are known,
thresholding could be seen as a means of compression, if
one is not concerned by quantization or entropy coding.

In [6], B. Natarajan initiated the somewhat surprising
approach that a good compression algorithm could serve
as a good denoising tool. One of his ideas was, when ap-
plying lossy compression with an allowed loss set equal to
the noise power, the compression loss (noise) and the initial
noise tend to cancel rather than add. Others authors ad-
dressed the problem in the fields of natural images [7] and
geophysics [8]. One could intuitively explain this surprising

approach as follows. Signals of interest traditionally pos-
sess strong correlations that efficient coders are able to pack
concisely. In contrast, uncoherent noises, such as white
noise, exhibit weak correlations or are badly predictable.
Good coders could thus be able to tell a redundant signal
from a noise, and act implicitely as a noise filter.

As we will see the next sections, compression effec-
tively reduces the ambient noise to some extent. The coder
used is this study is a based on lapped transform with em-
bedded zerotree coder developped by Tran et al. [9] and
adapted to seismic signals [10]. The filter banks used here
are the 8-channel Walsh-Hadamard transform and a 8-channel
16-tap biorthogonal lapped transform that together yield good
compression performance for raw seimic data such as the
ones used in this work, in Sect. 4-5. The quantization of co-
efficients into zero-zones performed by zerotree coding is
an approximation of thresholding. It explains the denoising
ability of the proposed coder.

(a) Noise-free model data

(b) Noisy model data

Fig. 1. Model data and a noise-corrupted version.

3. ADDITIVE NOISE AND SNR CALCULATIONS

The signal to noise ratio (SNR) is the most common mea-
sure of a signal quality. We must be careful of what we call
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Fig. 2. R-D curve for several ambient noise levels.

signal and what we call noise. Different definitions may
lead to different results.

Let d(t) = s(t) + na(t) be a typical seismic trace. It is
a 1-D signal composed of a coherent seismic signal s and
an uncoherent ambient noise na(t). If we compress loss-
ily d(t), the recovered signal d̂(t) is generally assumed cor-
rupted by additive compression noise nc(t). This noise is
often believed to be uncorrelated to the data. But to which
data exactly? If the coder actually denoises, nc(t) could be
uncorrelated to s(t), but probably not to the original ambi-
ent noise na(t), at least at low CRs. As a consequence, the
recovered signal d̂ = s+(na+nc) compared to s may even
reach a higher SNR than that of d, compared to s the noise
free signal, as long as the energy of na + nc does not ex-
ceed that of na, which would be difficult if both noises were
uncorrelated gaussian noises. We first evaluate the denois-
ing performance of the coder on model seismic data, where
we have complete control on the amount of noise (Sect. 4).
Actual field data is used in Section 5.

4. RESULTS ON MODEL SEISMIC DATA

Figure 1-(a) represent our model data, resulting from elast-
ing modeling based on an actual well log. Each vertical sig-
nal represent a seismic trace. When gathered together ”side
by side”, the traces form a shot gather image The noise-free
model is corrupted by an additive gaussian white noise with
various levels, playing the role of ambient noise, as in Fig.
1-(b).

Figure 2 represents the rate-distorsion curve (in solid
blue) at CRs ranging from 1 to 120, for several ambient
noise levels (in straight horizontal black dashed line). The
general trend we observe is that SNR first increases with the
CR, reaches a maximum and then decreases and finally slips

10 20 30 40 50 60 70 80 90 100 110 120

4

6

8

10

12

14

16

Compression ratio

S
N

R
 in

 d
B

Comp. SNR ≥ Init. SNR
Comp. SNR ≥ Init. SNR + 1dB
Comp. SNR ≥ Init. SNR + 2dB

Fig. 3. R-D curve for several ambient noise levels.

under the ambient noise level. The recovered data quality
is thus higher (in SNR sense) than the initial data quality
for a relatively wide range of CR. SNR improvement may
achieve up to 2 dB on the model data.

Figure 3 pictures a schematic view of the domains where
the SNR improvement in dB is positive (dark grey), greater
than 1 dB (medium grey) and greater that 2 dB (light gray)
respectively. For the model data, the bigger the noise, the
widder the CR range that yield SNR improvement.

Figure 4 represents one trace signal from the model data,
its noisy version, the ambient noise and the results after a
32 : 1 compression, both for the recovered signal and the
remaining noise. As we may see, the noise power has been
visually reduced, at the expense of a seemingly less random
behaviour than that of the original ambient noise. We also
remark the results in low signal activity regions are quite
poor. This could be explained by a converse of Natarajan’s
Occam principle: where there is almost no signal, even good
coders perform poorly in representing the noise.

5. RESULTS ON ACTUAL FIELD DATA

Figure 5 reflects the effects of compression on one trace sig-
nal of actual field data. The signal exhibits more complex-
ity than the model data used in Sect. 4, for instance less low
activity regions and no precise knowledge of the ambient
noise statistics. We have performed three compresion ratios
of 20, 30 and 40 respectively, and extracted the noise from
the original and the three compressed signals.

It turns out that a higher CR may yield lower noise power
(bottom right noise), at the risk of destroying low amplitude
seismic information, which if not evident here.
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6. CONCLUSIONS AND PERSPECTIVES

We have demonstrated that a lapped transform coder with
good compression performance is able to denoise seismic
data both in the SNR sense and visually. Results indicate
that as the ambient noise increases in the signal (up to a
limit), more improvement in SNR could be achieved on a
broader range of compression ratios.

However, the compression process could be improved
by using soft-thresholding or cleverer thresholding strate-
gies to reduce quantization noise in the remaining noise [7].
Further experiments are needed to interpret the actual effect
of the resulting less-white noise on typical seismic process-
ing sequences.

7. REFERENCES

[1] J. D. Villasenor, R. A. Ergas, and P. L. Donoho, “Seis-
mic data compression using high-dimensional wavelet
transforms,” in Proc. 6th Data Compression Confer-
ence. Apr. 1996, pp. 396–405, IEEE computer society
press.

[2] Paul Donoho, “Report on studies to develop diagnostic
procedures for safe data compression using lossy com-
pression methods,” Tech. Rep., SCDI Steering Com-
mitee, Aug. 2001, Draft copy.

[3] T. Røsten, T. A. Ramstad, and L. Amundsen, “Part I:
Subband coding of common offset gathers,” Submitted
to Geophysics, Preprint.

[4] L. C. Duval and T. Røsten, “Filter bank decomposition
of seismic data with application to compression and
denoising,” in Annual International Meeting. 2000,
pp. 2055–2058, Soc. of Expl. Geophysicists, Exp. ab-
stracts.

[5] D. L. Donoho and I. M. Johnstone, “Minimax estima-
tion via wavelet shrinkage,” Tech. Rep. 402, Stanford
University, Department of Statistics, July 1992.

[6] B. K. Natarajan, “Filtering random noise from deter-
ministic signals via data compression,” vol. 43, no. 11,
pp. 2595–2605, 1995.

[7] S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet
thresholding for image denoising and compression,”
IEEE Trans. on Image Proc., vol. 9, no. 9, pp. 1532–
1546, Feb. 2000.

[8] N. Saito, “Simultaneous noise suppresion and signal
compression using a library of orthonormal bases and
the minimum description length criterion,” in Wavelets
in Geophysics, E. Foufoula-Georgiou and P. Kumar,
Eds., pp. 299–324. Academic Press, 1994.

[9] T. D. Tran, R. L. de Queiroz, and T. Q. Nguyen, “Lin-
ear phase perfect reconstruction filter bank: lattice
structure, design, and application in image coding,”
IEEE Trans. on Signal Proc., vol. 48, pp. 133–147,
Jan. 2000.

[10] L. C. Duval and T. Nagai, “Seismic data compression
using GULLOTS,” in Int. Conf. on Acoust., Speech
and Sig. Proc., 2001.

−5

0

5

x 10
6

N
oi

se
−

fr
ee

 tr
ac

e

−5

0

5

x 10
6

N
oi

sy
 tr

ac
e

−5

0

5

x 10
6

T
ra

ce
 a

fte
r 

de
co

m
p.

500 1000
−1

−0.5

0

0.5

1
x 10

6

A
m

bi
en

t n
oi

se

Samples
500 1000

−1

−0.5

0

0.5

1
x 10

6

N
oi

se
 a

fte
r 

de
co

m
p

Samples

Fig. 4. Model data and noise behaviour before (left, 11.9
dB) and after (right) a 32 : 1 compression.
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Fig. 5. Actual data and noise behaviour before (left) and
after (right) 20, 30 and 40 compression.
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