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Abstract

Coherent noise or surface waves filtering represents one of the most complex issues in land seismic data
processing. Wavelet based filtering has recently begun to challenge the popular and robust frequency-
wavenumber (f -kx-ky) filter. Wavelet filters provide fine time-scale representations and non linear filtering
capabilities that yield in some instances better results on dispersive coherence noise. We propose in this
work an improvement over the classical discrete wavelets filtering via the use ofshift-invariant wavelets.
Though relatively computationally expensive, their theoretical framework enables a closer approximation
to the continuous wavelets, which results in finer filtering, less subject to aliasing and to wavelet ringing
artifacts. Results are demonstrated on real seismic data sets. Improvements on ground-roll filtering show
shift-invariant wavelets to be promising denoising techniques.

Introduction

Wavelet based techniques have emerged as tools capable of performing efficient separation and filtering of
noises arising from different kinds of sources, ubiquitous in field seismic data, see e.g. [Deighan et al., 1998]
or [Miao and Cheadle, 1998]. When looking at the wavelet transform from the filter bank perspective [Duval
and Røsten, 2000], some drawbacks of the discrete wavelet transform become clear when dealing with
aliased seismic data, since wavelet domain filtering implicitely adds aliasing to the theoretically perfectly
reconstructed data. In the first part, we briefly recall the principles of the discrete wavelet transform and
introduce the idea and some theoretical aspects of shift-invariant wavelet. The second part compares the
results obtained by the discrete and the newly introduced shift-invariant wavelet transform for ground-roll
removal.

Discrete wavelet transform: the classical and the shift-invariant

Discrete wavelets: the classical wavelet transform

The now well established discrete wavelet transform (DWT) is composed of a cascade of elementary blocks,
as shown in Fig. 1a. The analysis block first filters the input tracex(t) by a low-pass filterh0 and a high-pass
filter h1. The DWT is classicaly non-expansive, i.e. the number of output samples is about the same as the
input signal. Each filter output is thus decimated (or subsampled) by 2, i.e. every second sample is removed.
Theoretically, structural aliasing could result from decimation, since the Nyquist-Shannon condition is not
fulfilled anymore. The basic wavelet theory states that when the four analysis filtersh0, h1, g0 andg1 are
properly chosen, not only aliasing is completely removed, but the outputx̂(t) will also be strictly equal to
x, up to the integer time delayl (i.e. a multiple of the sampling interval).

For the sake of clarity, let us briefly recall some underlying equations. Two equations govern the exact
recovery of the input trace, where the notationF (z) stands for thez-transform of the filterf :

G0(z)H0(z) +G1(z)H1(z) = 2z�l; (1)
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G0(z)H0(�z) +G1(z)H1(�z) = 0: (2)

Equation 2 precisely states how filters should be jointly designed to completely avoid aliasing, when the
analysis and synthesis stages are performed one after the other, without intermediate processing (i.e. the
optional filteringbox between analysis and synthesis in Fig. 1-(a) is void). One usually chooses pairs of
filters following the relationshipsG0(z) = H1(�z) andG1(z) = �H0(�z) [Strang and Nguyen, 1996].
But in classical processing such as compression or filtering, one usually performs several operations between
the two stages, such as filtering, fine sample or time-scale mute. . . If one inserts the filtersr ands between
the analysis and the synthesis stages, the anti-aliasing Eq. 2 becomes:

X(�z)H0(�z)H1(�z)[R(z2)� S(z2)] = 0: (3)

Equation 3 is not easy to comply to, even more when considering cascading wavelet blocks.

Classical wavelet filtering via thresholding in the wavelet domain usually does less harm than in the time
or Fourier domain because of the smoothness of the wavelets. Wavelets therefore yield good results with
actual uncoherent noise [Miao and Cheadle, 1998] or coherent noise removal [Deighan et al., 1998].

But space domain aliasing sometimes exists in seismic data (e.g. in shot gathers) because of the receiver
lines spacing. As a consequence, it is not satisfactory to add even more aliasing to the data in the wavelet
domain.

Discrete wavelets: the shift-invariant wavelet transform

Since we may expect two close traces to share the same wavelet coefficients (up to a delay), the cause
for aliasing could be dropped, i.e. we could use the elementary analysis block from Fig. 1a without the
downsampling procedure (see Fig. 1b). As a result, the block becomes shift-invariant (SI), i.e.x(t) and
x(t � d) transforms yield the same output, up to the integer delayd. The property holds for the overall
SIWT transform too, since each block in the cascade is SI (shift-invariant). The resulting transform is called
the shift-invariant wavelet transform (SIWT).

SIWT is naturally more computationally expensive than DWT. The DWT has a low complexity of or-
derO(N) (N being the number of samples for a 1-D signal) but fast algorithms for SIWT exist that are
O(N log(N)).

But the main drawback of SIWT is its memory/storage burden. Since undersampling is dropped, each
elementary analysis block from Fig. 1b now produces twice the number of samples for a 1-D signal. If
we cascadeJ elementary SI-wavelet blocks on a d-D signal (for instanced = 3 for 3-D seismic), the
SIWT outputs on averageJ(2d � 1) + 1 samples for one single input sample. For instance, a 4-level SIWT
decomposition of a 3-D gather involves a volume of data about 30 times the initial one. Let us recall that
for DWT, the volume after transformation is the same as the initial volume. It is nevertheless possible to
manage calculations dimension by dimension to avoid or reduce the data in memory at once, but it increases
the overall algorithm complexity.

So why should we use SIWT instead of the classical DWT? The SIWT theory have been established inde-
pendently by several authors, e.g. [Coifman and Donoho, 1995] or [Pesquet et al., 1996], in the scope of
random noise removal. In a few words, besides the absence of filter aliasing, the advantages of the SIWT lie
in its redundant nature that gives a denser approximation to the continuous wavelet than the classical DWT.
Moreover, SIWT is less subject to Gibbs phenomenons or ringing artifacts than the DWT.

So far, SIWT as not been often applied to coherent noise removal. The next chapter provides a comparison
of ground-roll removal using DWT and SIWT.

Results: Comparison between DWT and SIWT ground-roll removal

Traditional surface waves removal methods include the popularf -k filter and its 3-D avatar, thef -kx-ky
filter, to take in account 3-D acquisition geometries. We focus here on DWT and SIWT 2-D filtering.
Several authors have assessed ground-roll removal in 2-D with the classical DWT [Deighan and Watts,
1997, Abdul-Jauwad and Kh`ene, 2000]. We refer to [Galibert et al., 2002] for a 3-D point of view with a
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Figure 1: (a) Classical discrete wavelet filtering (b) Shift invariant elementary block.

comparison to thef -kx-ky filter.

Result 1: events continuity and linear waves filtering

Figure 2a shows a portion from a shot gather contamined with ground-roll. We use a Daubechies wavelet
with the same time-scale selection for DWT and SIWT. Both DWT and SIWT filtering perform relatively
well, and are able to retrieve weak reflection signals (Fig. 2b) burried under strong noise(Fig. 2c). We can
see from the Fig. 3 close-up details that the SIWT performs slightly better than the DWT filter. Reflection
waves show improved continuity and the linear waves are better eliminated.

(a) (b) (c)

Figure 2: (a) Noisy data (b) SIWT filtered data and (c) cancelled noise with a Daubechies wavelet.

Figure 3: Zoom on DWT (left) and SIWT (right) filtering with a Daubechies wavelet.

Result 2: computation simplifications with the Haar wavelet

We already have pointed out that the SIWT is computionally expensive. Several methods have been devised
to reduce its burden. It is well known that the longer a wavelet filter, the closer its frequency response is
to an ideally sharp filter. The filter length adds to the computational complexity of the SIWT. The choice
of a specific wavelet amongst the numerous wavelet families is not an obvious task. Classical applications
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Figure 4: DWT (left) and SIWT (right) filtering with a Haar wavelet.

generally put the Haar wavelet aside, since it is often considered as trivial and inefficient for seismic signals
(the Haar wavelet has only one zero-moment and its brick impulse response yields poor filters.) But it is
very easy to compute since it requires only basic additions and substractions.

We show in Fig. 4 that the Haar wavelet performs indeed quite well in the SIWT framework, compared to
the classical DWT. From Fig. 4 (right), we can see that the smoothness of the SIWT filtered signals is close
to that of a more selective wavelet, as in Fig. 3b, while DWT results in Fig. 4 (left) are clearly unsatisfactory
with the same poor wavelet.

Conclusions and perspectives

We have introduced the use of shift-invariant wavelet transforms (SIWT) for coherent noise filering. We
have demonstrated on real 2-D data sets that the SIWT is able to outperform the DWT for ground-roll
removal. We did not assess in the present work the management of 3-D irregularities originating from
spatial sampling. These issues are discussed in [Galibert et al., 2002].
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