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ABSTRACT

GenLOT coding has been shown an effective technique
for seismic data compression, especially when compared
to block-based algorithms (such as JPEG), or to wavelets.
The transforms remove statistical redundancy and per-
mit efficient compression, when used with advanced en-
coding techniques, such as the Embedded Zerotree Cod-
ing framework. In this work we derive a model for seis-
mic data based on auto-regressive processes. This model
is used to design GenLOT filter banks optimized for seis-
mic data, using objective optimization criteria.

1. INTRODUCTION

Seismic data compression is becoming crucial in geo-
physical applications, both for storage and transmis-
sion purposes. Wavelet coding methods have long been
shown effective for compressing seismic data. They have
generated interesting developments, including software
and hardware implementation for a real-time field test
trial in the North Sea in 1995 [SED+95]. More re-
cently, methods involving local cosine bases [Mey99],
non-unitary filter banks [RRA99] or GenLOTs (gener-
alized lapped orthogonal transforms) have also been de-
veloped.

Recent works in image processing have shown than
GenLOT with proper design outperform wavelet com-
pression for natural images [TN99]. Some of the authors
have demonstrated [DN99] that predesigned GenLOTs
outperform state-of-the-art biorthogonal wavelet coders
for seismic data. GenLOTs provide a better frequency
partioning scheme than wavelets. They act more locally
on non stationary seismic data, and tend to better decor-
relate the data. Instead of using generic transforms,
such as wavelets, it is desirable to adapt the transforms
to the data properties.

Røsten et al. have already demonstrated coding gain
filter bank optimization for well structured seismic data,
such as common offset gathers or stack sections.

In this work, we focus on the problem of compress-
ing raw seismic shots. We propose seismic data model-
ing based on auto-regressive processes, and subsequent
GenLOT optimization using several objective criteria.
We conclude that data based optimization is desirable

in order to obtain the best from the progressive Gen-
LOT seismic coder described in [DON99]: the resulting
transforms yield higher SNRs for the same compression
ratio.
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Figure 1: Land raw shot.

2. MOTIVATIONS OF DATA BASED
OPTIMIZATION

coding
EntropySeismic

data

Zig-zag
Zerotree codingGenLOT

Wavelet

Local cosine

Reversible gain

Blocking

NMO correction

Transform
Compressed

data 
QuantizationPreprocessing 

(optional)

Embedded progressive coding

Figure 2: Implementation of a transform based coder.

In most of the transform based natural image coders,
the transform stage applies on rows and columns sepa-
rately. Implementation easiness aside, one reason for
this is that natural images are classically modeled as
2-D sets of separable 1-D signals, as exposed in Jayant
and Noll’s book [JN84]. Evolved coders nevertheless act
in a 2-D fashion at least in the entropy coding stage, cf.



Fig 2, in order to capture more efficiently the 2-D struc-
ture of images. Standard JPEG or Said and Pearlman’s
SPIHT [SP96] make use of 1-D coding (for instance a
block DCT or a biorthogonal wavelet) but the JPEG
zig-zag order or the Embedded Zerotree Coding intro-
duced by J.-M. Shapiro [Sha93] and extended by Said
and Pearlman [SP96] lead to better performance than
pure 1-D raster scan coding of the transformed coeffi-
cients.

Recent works in image processing have shown than
GenLOT with proper design outperform wavelet com-
pression for natural images [?]. Some of the authors
have already shown [DN99] that predesigned GenLOTs
outperform state-of-the-art biorthogonal wavelet coders
for seismic data. GenLOTs provide a better frequency
partioning scheme than wavelets, and act more locally
on the non stationary seismic data.

We focus here on objective criteria based GenLOT
optimization techniques for seismic data compression.
Røsten et al. have shown that it is possible to use a sep-
arable model for organized 2-D data sets, like common
offset gathers or stack sections [Yil87]. In our case, we
use raw seismic shots from a land survey. The idea is to
find good filter banks and good filter bank optimization
techniques for seismic data, without field preprocessing
or data sorting, with application to acquisition, in order:

• to avoid or drastically reduce extensive testings of
vast amounts of available filter banks by selecting
a priori good filters banks;

• to tailor filter banks with degrees of freedom to
the statistical properties of the data.

One of the most commonly used objective criterion
for filter bank performance is the coding gain. It can
be seen as a measure of energy compaction improve-
ment, when using a transform or a subband compres-
sion scheme, over a basic pulse code modulation (PCM),
as detailed in the Jayant and Noll’s book [JN84]. The
following chapters demonstrate the use of coding gain
along with stopband attenuation and DC leakage opti-
mization for seismic data compression.

The filter banks obtained through optimization in
this work are used within the seismic coder proposed by
the authors in [DON99].

3. SIGNAL MODELING

Let x be a realization of an 1-D real-valued autoregres-
sive process of order n (AR(n)). We assume x has unit
variance σx = 1 and prediction coefficients b1, b2, b3, . . .
Let rx be the normalized auto-covariance function (Acf)
of x. The right hand side of the Acf also follows a noise-
less AR(n) model, with the same prediction coefficients
b1, b2, b3, . . . For i ≥ n, we have

rx(i) = b1rx(i−1)+b2rx(i−2)+. . .+bnrx(i−n).(1)

The Acf is symmetric (as for any real signal), and the
linear equations extend to every lag i, as show in Jayant
and Noll [JN84] (p. 60–68). In the simple case of an

AR(1) process, we call ρ1 the first normalized coefficient,
corresponding to rx(1). The Acf is then given by

rx(i) = ρ
|i|
1 . (2)

We will denote by SNAR(n) a Symmetric Noiseless Au-
toregressive process with order n. In image compression
applications, the Acf of these 1-D signals is classically
modeled as a SNAR(1), with intersample correlation
ρ1 = 0.95 [Mal92, SN96]. Autoregressive models are
poorly suited to seismic data in general, but SNAR pro-
cesses nevertheless fit the seismic data Acf well, as we
will see in chapter 4.

4. SEISMIC SIGNAL MODELING

If we try to model seismic signals with an autoregressive
process, classical linear progressive coding (LPC) often
leads to non stable regression coefficients. One reason
could be that seismic signals are often considered as non
stationarity. Some consider they still possess some lo-
cally stationarity, but this assumption might even be
not valid. Nevertheless, if we consider the autocovari-
ance function only, Røsten et al. [RMRP99] have al-
ready shown that SNAR(1) or (2) give good results in
filter bank optimization.

In the scope of this work, we use SNAR models up
order 4, at which the validity of the model becomes
doubtful. We call ρ0, . . . , ρ3 the first four autocovariance
coefficients rx(0), . . . , rx(3). The correlation coefficients
are then given by:

ρ0 = 1 (3)

ρ1 = f(b1, b2, b3, b4) (4)

ρ2 =
b2 + (b1 + b3)ρ1

1− b4
(5)

ρ3 = b3 + (b2 + b4)ρ1 + b1ρ2 (6)

rx(i) = b1rx(i− 1) + . . .+ b4rx(i− 4). (7)

The bis are obtained directly by calculations on rx, and
not on the signal x to avoid coefficient instability. The
terms ρ0, . . . , ρ3 were found using Eq. 7 and the fact
that rx(−i) = rx(i). If we set b1 = b2 = b3 = 0, and
then b2 = b3 = 0 we find again the two SNAR models
given in Jayant and Noll [JN84]:

rx(0) = 1 (8)

rx(1) = ρ1 (9)

rx(|i|) = ρ
|i|
1 (10)

and

rx(0) = 1 (11)

rx(1) =
b1

1− b2
(12)

rx(i) = b1rx(i− 1) + b2rx(i− 2). (13)

respectively.
There are several ways to obtain the coefficients bi.

The most convincing method estimates coefficients from
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each horizontal or vertical line of the raw shot, and aver-
ages them to obtain an synthetic model of the horizontal
and vertical signals, the later displayed in Fig. 3. Mod-
eling results are given in Table 1.
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Figure 3: Averaged autocorrelation sample.

Direction Order b1 b2 b3
Vertical 1 0.96

2 1.35 -0.40
3 1.23 -0.019 -0.28
4 1.17 -0.023 -0.015 -0.21

Horizontal 1 0.021
2 0.020 0.025
3 0.020 -0.025 0.005

Table 1: Averaged prediction coefficients at orders 1 to
4

We can see that horizontal correlation is almost inex-
istent. We thus do not need to use complicated overlap-
ping GenLOT, and a simple DCT is generaly sufficient.
The performance of the SNAR models is shown in Fig.
4. They appear to be quite inaccurate, even at small
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Figure 4: Autocorrelation SNAR models.

lags.

5. FILTER BANK DESIGN

Several criteria are used for transform optimization: for
instance, coding gain (CG) optimization usually cor-
relates with higher SNRs (objective measure). Other
objective measures include stopband attenuation or DC

leakage (DC). Though not essential, they often improve
the visual quality of the reconstructed data. Since vi-
sual quality is not essential to seismic data, we need to
caracterize the effect of these measure on seismic signal
quality.

5.1. Coding gain

Let x be a signal, σx its variance, σxi the variance of
the ith subband, and ‖fi‖ the L2-norm of the ith filter.
Under appropriate assumptions, such as optimal bit rate
allocation (cf. [RAH95] for a comprehensive survey), the
coding gain can be formulated as

CC = 10 log10

σ2
x∏M−1

i=0
σ2
xi‖fi‖2

(14)

5.2. Stopband attenuation

Here, the stopband criterion is chosen to be the contri-
bution of all the filters’ energy on Ωi, which defines the
outside of Fi passband:

CS =

M−1∑
i=0

∫
Ωi

|Fi(ejω)|2dω. (15)

5.3. DC leakage

The DC leakage measures the part of the DC energy
that overlaps out of lowpass subband. It can be defined
as:

CD =

M−1∑
i=0

L−1∑
j=0

fi(j). (16)

These three measures can be varied through appro-
priate weighting of the following overall cost function
C:

C = kCCC + kSCS + kdCD. (17)

We refer to T. Tran’s article [?] for more detailed
issues on filter bank optimization, and comparison to
wavelet coders for natural images.

6. OPTIMIZATION RESULTS

In this chapter, we have used a 40-tap, 8-channel struc-
ture. The following basic optimization steps have been
performed:

1. C: coding gain,

2. D: DC leakage,

3. S: stopband attenuation.

An acronym like CDS4 means the filter bank has been
obtained by the C, D, and S steps in this particular
order, with implicit SNAR order model 4 for Toeplitz
matrix calculation.

Results are given in signal to noise (SNR) vs. com-
pression ratio can be read in tables 2-3.



Ratio C0 C1 C2 C3 C4
10 69.41 71.01 70.07 70.08 70.98
20 55.14 56.86 55.34 55.31 56.60
30 49.62 50.11 49.93 50.05 50.33

Table 2: Coding gain optimization in the vertical direc-
tion vs. DCT.

Table 2 shows that one data based model always
performs better than the basic 0.95 intersample correla-
tion. But increasing the order does not always improve
quality, and order 1 and 4 perform almost the same. De-
pending on the compression ratios, order 1 adds between
0.5 and 1.5 dB approximately.

We have chosen order 1 for further filter bank opti-
mization.

Ratio C1 CS1 SCD2
10 71.01 71.06 70.54
20 55.34 56.93 56.98
30 50.11 50.22 51.38

Table 3: Further optimization in the vertical direction.

We can see in Table 3 that filter bank design is not
an easy task, since further optimization does not means
gain at all compression ratios. Subband attenuation fol-
lowed by coding gain and DC leakage at order 2 can be
down by 0.5 dB at 10 : 1, but add up to 1.20 dB at
30 : 1, compared to order 1 optimization.

7. CONCLUSIONS

Data based GenLOT optimization is desirable for seis-
mic data, since the simple SNAR models are sufficiently
reliable at low prediction orders. We have observed than
a ”good filter bank” for one particuliar raw shot remain
relatively good for other successive raw shots along the
same acquisition line. The filter design burden is thus
shared by several data sets, and is still useful if we are
able to improve the quality by 1 to 3 dB at a fixed com-
pression ratio.
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