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Abstract
GenLOT coding has been shown an e�ective technique for seis-

mic data compression, especially when compared to block-based al-
gorithms (such as JPEG), or to wavelets. The transforms remove
statistical redundancy and permit e�cient compression, when used
with advanced encoding techniques, such as the Embedded Zerotree
Coding framework. In this work we derive a model for seismic data
based on auto-regressive processes. This model is used to design
GenLOT �lter banks optimized for seismic data, using objective op-
timization criteria.

1 Introduction

Seismic data compression is desirable in geophysics for both storage and transmission
stages. Wavelet coding methods [DEP98] are e�ective for compressing seismic data.
They have generated interesting developments, including software and hardware im-
plementation for a real-time �eld test trial in the North Sea in 1995 [VED96]. Newer
methods, involving local cosine bases [Mey99], non-unitary �lter banks [RWRA99] or
generalized lapped orthogonal transforms (GenLOTs) have been developed to over-
come some of the wavelet shortcomings by incorporating additional features in the
transform. Recent works in image processing have shown than GenLOT with proper
design outperforms wavelet compression for natural images [TN99]. Some of the au-
thors have shown in a previous work [DN99] that GenLOT with basic optimization
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also outperforms state-of-the-art biorthogonal wavelet coders for seismic data. In this
work, we focus on the problem of �lter bank optimization using various properties of
seismic data. Seismic data used in this paper was acquired by the French Institute
for Petroleum (IFP) in 1996 in the Forêt d'Orléans, France. A seismic stack section,
shown in Fig. 1, is modeled by autoregressive processes up to order 4 and is com-
pared to the results using the conventional model with 0.95 intersample correlation
(for natural images). The experiment shows that data-based optimization is desirable
in order to obtain the best from the progressive GenLOT seismic coder described in
[DON99].

2 Motivations of data-based optimization

Most of the transform-based image coders, such as the standard JPEG coder or
Said and Pearlman's SPIHT [SP96] compress the rows and columns separately, using
for instance block DCT or biorthogonal wavelets, respectively. More precisely, the
transform stage is applied in a "separate fashion" to the rows and columns, considered
as 1-D x(i) signals. The encoding process is often 2-D in nature, in order to encompass
more e�ciently the 2-D structure of the image. These include the JPEG zig-zag
order or the Embedded Zerotree Coding introduced by J.-M. Shapiro [Sha93] and
the extended method by Said and Pearlman [SP96]. They have better performance
comparing to the method that uses pure 1-D raster scan coding of the transformed
coe�cients.

It is often desirable to evaluate the compression performance of a transform on a
set of data using a priori objective measures. The purpose is two-fold:

• �rst, to avoid or drastically reduce extensive testings of many available trans-
forms by selecting only a priori good transforms;

• secondly, by tailoring the transforms to the statistical properties of the data set.

One of the most commonly used objective criterion for �lter bank (i.e., transform)
is the coding gain. It can be used as a measure of energy compaction improvement
over a basic pulse code modulation (PCM), when using a transform or a subband
compression scheme instead of PCM [JN84]. The following sections demonstrate the
use of coding gain along with stopband attenuation and DC leakage optimization
for seismic data compression. The �lter banks obtained through optimization in this
work are used within the seismic coder proposed by the authors [DON99] at the latest
meeting of the Society of Exploration Geophysicists.

3 Signal modeling

Let x be a realization of an 1-D real-valued autoregressive process of order n, abbrevi-
ated as AR(n). We assume that x has unit variance σx = 1 and prediction coe�cients
b1, b2, b3, . . . Let rx be the normalized auto-covariance function (Acf) of x. The right
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hand side of the Acf also follows a noiseless AR (n) model, with the same prediction
coe�cients b1, b2, b3, . . . For i ≥ n, we have:

rx(i) = b1rx(i− 1) + b2rx(i− 2) + . . .+ bnrx(i− n). (1)

In the simple case of an AR(1) process, ρ1 is the �rst normalized coe�cient, corre-
sponding to rx(1). The Acf then is given by:

rx(i) = ρ
|i|
1 . (2)

SNAR(n) denotes the above Symmetric Noiseless Autoregressive process with order
n. In image compression applications, the Acf of 1-D signal is classically modeled as
SNAR(1), with intersample correlation ρ1 = 0.95 [Mal92, SN96].

4 Seismic signal modeling

In this section, we discuss the modelling aspect of seismic data using autoregressive
process. If we try to model seismic signals with an autoregressive process, classical
linear progressive coding (LPC) often leads to non stable regression coe�cients. One
reason could be that seismic signals are often considered as non stationarity. Nev-
ertheless, if we consider the autocovariance function only, Røsten et al. [RMRP99]
have already shown that SNAR(1) or 2 give good results in �lter bank optimization.

In the scope of this work, we use SNAR models up order 4, at which the validity
of the model becomes doubtful, as seen in Table 1. Let ρ0, . . . , ρ3 be the �rst four
autocovariance coe�cients rx(0), . . . , rx(3). The correlation coe�cients are then given
by:

ρ0 = 1 (3)

ρ1 =
(1− b4)(b1 + b3b4) + b2(b3 + b1b4)

(1− b4)(1− b2 − b2b4 − b2
4)− (b1 + b3)(b3 + b1b4)

(4)

ρ2 =
b2 + (b1 + b3)ρ1

1− b4

(5)

ρ3 = b3 + (b2 + b4)ρ1 + b1ρ2 (6)

rx(i) = b1rx(i− 1) + b2rx(i− 2) + . . .+ b4rx(i− 4), i ≥ 4. (7)

The coe�cients bi are obtained directly by calculations on rx, and not on the signal x
to avoid coe�cient unstability. The coe�cients ρis are derived from Eq. 7 and from
Acf's symmetric property:

rx(i) = rx(−i) (8)

Setting b1 = b2 = b3 = 0, and then b2 = b3 = 0 yields the two SNAR models given in
Jayant and Noll [JN84]:

rx(|i|) = ρ
|i|
1 . (9)
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and

rx(0) = 1 (10)

rx(1) =
b1

1− b2

(11)

rx(i) = b1rx(i− 1) + b2rx(i− 2). (12)

respectively.
Each horizontal or vertical line of the stack section displayed in �gures 1 gives dif-

ferent coe�cients, and they are averaged to obtain an average model of the horizontal
and vertical signals. The model parameters are summarized in Table 1.

Direction Order b1 b2 b3 b4
Vertical 1 0.8523 (0.024)

2 1.2500 (0.050) -0.4670 (0.057)
3 1.1593 (0.039) -0.2259 (0.054) -0.1923 (0.038)
4 1.1499 (0.041) -0.2329 (0.045) -0.1457 (0.028) -0.0404 (0.048)

Horizontal 1 0.9393 (0.037)
2 0.9344 (0.095) 0.0068 (0.077)
3 0.9325 (0.030) -0.0225 (0.094) 0.0558 (0.037)

Table 1: Averaged prediction coe�cients for models with orders 1 to 4

In the later case (horizontal direction, order 3), since the second averaged coe�-
cient, −0.0225, is much smaller than its standard deviation, we thus do not expect
this model to be very accurate.

5 Filter bank (Transform) design

Several criteria are used for transform optimization: for instance, coding gain (CG)
optimization usually correlates with higher SNRs (objective measure). Other objec-
tive measures include stopband attenuation or DC leakage (DC). Though not essential,
they often improve the visual quality of the reconstructed data.
Coding gain Let x, σx and σxi be the input signal, its variance and the variance
of the ith subband, respectively, and ‖fi‖ be the L2-norm of the ith �lter. Under
appropriate assumptions, such as optimal bit rate allocation (cf. [RAH95] for a
comprehensive survey), the coding gain can be formulated as

CC = 10 log10

σ2
x∏M−1

i=0 σ2
xi
‖fi‖2

. (13)

Stopband attenuation Here, the stopband criterion is chosen to be the contribution
of all the �lters' energy outside of Fi passband, denoted as Ωi:

CS =
M−1∑
i=0

∫
Ωi
|Fi(ejω)|2dω. (14)
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DC leakage The DC leakage measures the part of the DC energy that overlaps out
of lowpass subband. It can be de�ned as:

CD =
M−1∑
i=0

L−1∑
j=0

fi(j). (15)

The above objective measures can be weighted in the overall cost function Co:

Co = kCCC + kSCS + kdCD. (16)

We refer to T. Tran's article [TN99] for more detailed issues on �lter bank opti-
mization, and comparison to wavelet coders for natural images.

6 Optimization results

In this chapter, a 8-channel GenLOT with length 16 is used in the simulation. The
following design steps yield �lter bank with good objective measure:

1. �rst, start from a lattice with optimal stopband attenuation (S),

2. then, maximize the coding gain (C),

3. end with DC leakage minimization (D).

Results are given in signal to noise ratio (SNR) vs. compression ratio in tables
2-4. The letter S in the top row denotes results obtained from �lter banks with only
stopband attenuation measure whereas SCn denotes results obtained from �lter banks
with stopband attenuation measure followed by coding gain maximization with SNAR
order n, and SCD denotes the results obtained from �lter banks with the complete
optimization procedure. It is worth noting that, if the S and C steps often lead to
(local) maximum, the SCD �lter banks often result from uncompleted optimization
(no minimum reached after 20.000 iterations), denoted by the star symbol ∗. This
explains why we only display the minimum and the maximum SNRs at this step.
In tables 2-3, we �rst display the optimization results in one direction only. The
transform for the other direction is chosen to be the DCT. Table 4 shows the GenLOT
gain over block 8× 8 DCT and Malvar's LOT with 8 channels and 16 taps.

Ratio S SC0 SC1 SC2 SC3 SC4 Min SCD* Max SCD*
20 40.31 42.75 42.76 43.03 43.08 43.08 43.90 44.05
50 31.30 32.12 32.12 32.42 32.46 32.47 33.73 33.76
80 28.60 29.20 29.20 29.23 29.49 29.46 30.75 30.77

Table 2: GenLOT optimization in the vertical "time" direction vs. DCT.

From Tab. 4, we can see that, when the design procedure reaches a local max-
imum, (e.g. when we perform only stopband attenuation followed by coding gain
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Ratio S SC0 SC1 SC2 SC3 Min SCD* Max SCD*
20 40.17 41.32 41.31 41.33 41.34 42.00 42.02
50 30.42 31.66 31.67 31.67 31.70 32.87 32.89
80 27.41 28.82 28.83 28.83 28.88 30.19 30.20

Table 3: GenLOT optimization in the horizontal "space" direction vs. DCT.

Ratio DCT LOT Min. SCD* Max. SCD*
20 41.66 44.09 44.21 44.38
50 32.52 33.93 34.04 34.08
80 29.81 30.99 31.06 31.09

Table 4: Comparison between DCT, LOT and pseudo-optimal GenLOTs

optimization) the resulting SNR increases nearly monotonously with the model or-
der. And even if a local maximum is not reached, at high bit rates or low distortion,
partial optimization may yield results up to 3.5 dB better compared to basic stopband
optimization, or 1.30 dB to 0.95 intersample correlation modeling. This is particularly
interesting for raw seismic data sets, where the DCT can be used in the horizontal
direction because of the poor correlation in the space direction, cf. [DON99]. Even
in the stack case, with a little more horizontal correlation, a simple �rst order models
might be su�cient in general, while vertical direction may require models with higher
order.

7 Conclusion

Data based GenLOT optimization is desirable for seismic data, since simple SNAR
models are su�ciently reliable at low prediction orders. Furthermore, even non com-
plete optimization procedures lead to good objective results. Convergence problems
nevertheless need to be addressed, in order to obtain more optimal �lters.
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Figure 1: Seismic stack section from Forêt d'Orléans.
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Figure 2: Auto-covariance for one vertical signal.

Figure 3: Auto-covariance models for one horizontal signal.
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