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ABSTRACT

Generalized Lapped Orthogonal Transform (GenLOT) based image coder is used to compress 2-D seismic data sets.
Its performance is compared to the results using wavelet-based image coder. Both algorithms use the same state-of-
the-art zerotree coding for consistency and fair comparison. Several parameters such as �lter length and objective
cost function are varied to �nd the best suited �lter banks. It is found that for raw data, �lter bank with long
overlapping �lters should be used for processing signals along the time direction whereas �lter bank with short �lters
should be used for processing signal along the distance direction. This combination yields the best results.
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1. INTRODUCTION

The amount of data collected in a modern seismic survey may exceed Terabytes, depending on the high resolution
representation, dense sensor arrays and long time observation. Management of these large datasets, despite recent
increases in mass storage capacity, still presents challenging problems, especially in transmission, but also for storage,
processing and interpretation.

Wavelet coding methods has been shown e�ective for compressing natural image as well as seismic data. They
have generated a lot of exciting development, including software and hardware implementation for real-time �eld
transmission.

Recently, works of several authors on GenLOT and its application to natural image coding demonstrate its
advantage over wavelet-based coding. Since GenLOTs provide a better frequency partitioning scheme than wavelets,
and are applied locally on non-stationary seismic signals, they lead to better performance in terms of SNR and visual
interpretation (less ringing artifacts) than state-of-the-art wavelet coders.

In this paper, we compare the performance of GenLOT-based and wavelet-based image coder on seismic data.
Both compression algorithms use the same zerotree coding for consistency and fair comparison, on several sets of
seismic data including land, marine and synthetic data. Complete comparison on the algorithm performance from
acquisition to interpretation, and from raw data sets to stacked sections are proposed. We compress the data using
several compression ratios from 10 : 1 to 150 : 1. Preliminary results show that GenLOT-based coding o�ers over 2
to 5 dB improvements in distortion for raw land datasets. Impact of compression on seismic compression is tested
on natural and synthetic data. We show that GenLOT has better performance than wavelet, both objectively and
subjectively. Moreover, the proposed GenLOT coder allows parallel processing, and incorporates a quality control
feature for progressive transmission.
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2. WAVELET AND GENLOT IMAGE CODING

Traditional lossy image coders consist of three stages:

� a transform or subband decomposition (orthogonal or not) which partially decorrelates the signal,

� a quantization which removes hopefully useless details (in some visual/geophysical sense),

� and entropy coding removing the remaining redundancy.

This section quickly reviews the �lter banks theory, including wavelets and GenLOTs. We refer to Strang
and Nguyen1 for a comprehensive survey on wavelets and �lter banks. We also describe quantization and encoding
schemes, with an emphasis on the zerotree coding (ZC) framework which combines the two later stages in an embedded
quantization/encoding. This technique allows:

� exact bit rate compression, to match a �xed bandwidth transmission exactly, such as for seismic vessel to
satellite,

� straightforward quality checks (QC) by transmitting only a fraction of the compressed �le.2

In this study, we work with 2-D separable transforms on 2-D seismic images. We therefore concentrate on 1-D
�lter banks for wavelets and GenLOTs as well. One reason is that seismic data is often modeled as 2-D separable
processes, as demonstrated by R�sten et al.3 It is shown useful to use �lter banks with di�erent properties on the
non-isotropic seismic data (they possess di�erent statistical properties in the time and in the space direction).

2.1. Review of previous works

Subband coding is widely used for seismic data compression. Among these methods are the wavelet transform, as
used by Luo and Schuster4 and Donoho et al.5,6 Wavelet compression has been shown to be very e�ective and has
led to actual �eld transmission (Stigant et al.7). Local cosine transform (Vermeer et al.8) has also been used: its
overlapping windows are well suited to capture the oscillatory nature of seismic signals. Most general �lter banks
present promising alternative, as in R�sten et al.9 We design here �lter banks based on the Generalized Lapped
Orthogonal Transform.

2.2. Wavelet transform

From a �lter bank perspective, the wavelet transform is an octave-band decomposition of signals: the dyadic wavelet
transform can be obtained by iterating on the low-pass output of a PR 2-channel �lter bank.

There are two families of wavelets, orthogonal and biorthogonal. The later is the most often used in data
compression: it can have compact support with symmetric and �nite �lter impulse response, leading to linear
phase �lters. Orthogonal wavelets (except Haar's) are non-linear phase, which leads to annoying artifacts after
decompression. We use in this study short, medium and long wavelet �lter banks (FB), respectively with 5-3, 8-4
and 9-7 taps for the low-pass and the high-pass analysis �lters. The later is the one used in the FBI �ngerprint
compression algorithm. It is one of the most used FB for wavelet data compression so far, for natural image10 and
seismic data11 as well.

2.3. From M-band �lter banks to GenLOT

The wavelet transform can achieve a partition of the signal's spectrum in M dyadic bands. However, for medium or
high-frequency signals, M -channel uniform �lter banks often o�er better results. They also provide more degrees of
freedom for proper �lter design.

Image coding already uses M -channel �lter banks: the JPEG standard uses a 8 � 8 discrete cosine transform
(DCT), which is a 8-channel 8-tap paraunitary �lter bank. Artifacts such as blocking e�ect arise in JPEG compression
at higher bit rates. Moreover, independent compression of 8 � 8 blocks results in a loss of compression (there still
exists correlation between blocks). Lapped Orthogonal Transform (LOT) is an extension of the DCT. It is a M -
channel (M even) paraunitary �lter bank with 2M taps, i. e. with overlapping on the two neighboring M pixel
blocks. LOT partly smoothes out the block boundaries and reduces blocking artifacts.
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Dyadic and regular partition

Figure 1. Dyadic wavelet (left) and regular GenLOT (right) frequency partition.

Embedded coding

Figure 2. Parent-descendent relationship in the dyadic segmentation

But longer overlaps are needed for further reduction of blocking e�ect, motivating the development of GenLOT
by De Queiroz et al.12 Assuming the number of channels M is even and all the �lter length L is a multiple of M
(L = NM ), all linear phase paraunitary FBs can be factorized into modular building blocks, where DCT and LOT
are special cases (with N = 1 or N = 2 respectively). The input signal is divided into sequences of L samples, and
overlapped sequences have M (N � 1) samples in common. GenLOT has regular frequency partition (uniform-band
decomposition), whereas wavelet's is dyadic, as seen in Fig. 1. The DC subband still presents correlation. It is
further decorrelated by a dyadic wavelet transform.

2.4. Quantization and encoding techniques

Traditional coders perform a thresholding/quantization on the transformed coe�cients, followed by entropy coding
(Run Length Encoding, Hu�man or arithmetic coding). The later stage reduces the remaining coe�cients' entropy.

Shapiro13 has de�ned an novel approach for progressive coding of images. It relies on the idea that the most
important information should be transmitted �rst. With mean squared error (MSE) as a distortion measure and a
paraunitary transform, it can been shown that when the transform coe�cients ci;j are sent one by one, the MSE
decreases by c2i;j=Npixels (see e.g. Said and Pearlman10). The most important information is the largest coe�cients,
which can still be transmitted in bit plane order, in a re�nable process, from most to least valued bit weight. Further
redundancy removal between subbands is obtained by a hierarchical tree structure. This structure parses across
subband coe�cients having the same spatial location. Natural and seismic image possess the feature that, after a
proper transform stage, null coe�cients are likely to have zero or small descendents (coe�cients below one node
called parent, sharing the same spatial location). Figure 2 shows the parent-descendent relationship in the classical
dyadic segmentation of the transformed image. We refer to Said and Pearlman10 for practical implementation.
Tran and Nguyen14 have shown that a block transform can be rearranged in the same tree-like structure, which is
demonstrated in �g. 1. The same zerotree coding algorithm also applies to GenLOT. The performance of zerotree
coding then relies on the transform's ability to decorrelate coe�cients.



2.5. Filter bank design

Recent works in image processing have shown than GenLOT with proper design outperform wavelet compression for
conventional images.14 Several criteria are used for transformation optimization: for instance, Coding gain (CG)
optimization usually correlates with higher SNRs (objective measure). Other objective measures include DC leakage
(DC). Though not essential, it often improves the visual quality of the reconstructed data (subjective measure). The
article14 discusses issues on �lter bank optimization, and comparison to wavelet coders. Optimization for the �lters
used in this study are to be found in Table 1.

Filter Channels (M) Length (N) Optimization Index
DCT 8 8 none 1
LOT 8 16 none 2
LOT16 16 32 none 3
LOT42cgmax 4 8 cgmax 4
LOT84cg 8 32 cg 5
LOT84cgdc 8 32 cgdc 6
LOT85cg 8 40 cg 7
LOT86 8 48 none 8
LOT86cgdc 8 48 cgdc 9
LOT86cgmax 8 48 cgmax 10
LOT86fr 8 48 fr 11
LOT86frmax 8 48 frmax 12
LOT89 8 72 none 13
ULLOT 8 16 none 14
ULLOT834cgfr 8 24 cgfr 15

Table 1. Parameters for the chosen GenLOT �lter banks

Symbol Explanation
M number of channels
cgdc maximal coding gain and no DC leakage
cgmax maximal coding gain
dcfr no DC leakage and maximal frequency attenuation
frmax maximal frequency attenuation
none no DC leakage

Table 2. Explanation for symbols in Table 1

3. RESULTS AND COMPARISONS

We demonstrate the e�ectiveness of GenLOT-based compression on two sets of raw seismic data, and one stacked
section, as shown in Fig. 3.

It is well known that traditional error measures such as signal/noise ratio (SNR) do not really measure the data
quality. It nevertheless can be used for comparison between two compression methods at the same compression ratio.
Following Vassiliou and Wickerhauser,11 we compute the following two types of signal/noise ratios, the conventional
SNR and the absolute SNR (ASNR):

SNR = 10 log10
�P

n s
2
n=
P

n�s2n
�

ASNR = 20 log10 (
P

n jsnj=
P

n j�snj) :



Offset

T
im

e

Raw land shot

10 20 30 40 50 60 70 80

500

1000

1500

2000

2500

3000

3500

4000

Land data

Offset

T
im

e

Raw marine shot

10 20 30 40 50 60

500

1000

1500

2000

2500

Marine data

Offset

T
im

e

Stacked section

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Stacked section

Figure 3. Seismic datasets used in this study



3.1. Results

We �rst performed a comparison between biorthogonal wavelets for both error measures for the three datasets
(Fig. 4 and 5). These �gures con�rm previously reported results11 about the relatively better performance of the
9-7 wavelet compared to other wavelets. We therefore use the 9-7 performance as a benchmark for the performance
of the GenLOT �lters. One should note that the same trends occur in both conventional SNR and ASNR plots. We
therefore use the sole SNR for the remaining comparisons. Finally, wavelet behaviour seems to be asymptotically
the same for raw data, land and marine, as the compression ratio increases.

The performance of the 15�15 GenLOT pairs (15 in both the x and y-direction) is evaluated on the land data at
compression ratio 10 : 1. This performance is indicated in Fig. 6, where good SNRs are denoted in white. We choose
the three brighter horizontal stripes, with indexes 1, 14, 4 (namely DCT, ULLOT and LOT42cgmax) and 7, 13, 11
(LOT85cg, LOT89 and LOT86fr) in the vertical direction. One can see that we obtain better results (for raw data
sets) with relatively short bases in the horizontal direction, indicating less correlated information. Our experiments
also con�rm that longer, overlapping bases in the vertical direction give higher SNRs.

For the land raw data set, the best �lters over all compression ratios are:

Horizontal direction Vertical direction
DCT LOT85cg
DCT LOT89
LOT42cgmax LOT85cg

Table 3. Best �lters for the land raw data set

For marine raw data set, the best �lters over all the compression ratios are:

Horizontal direction Vertical direction
DCT LOT85cg
ULLOT LOT85cg
DCT LOT89

Table 4. Best �lters for the marine raw data set

Plots from Fig. 7 demonstrate the importance of choosing di�erent �lter banks for vertical and horizontal direc-
tions, especially for the land data. We can therefore select the DCT which performs better in both cases. We obtain
in average between 2 and 5 dB with the best �lter bank, comparing to the 9-7 wavelet.

Experiments on the stacked section (Fig. 8) show that short �lters only achieve good results at lower compression
ratios. Decomposing data with the same longer �lter banks (40 or 48 taps) gives the best results, 3 to 5 dB above
the wavelet distorsion curve. The di�erence stack plots (di�erence between the original and the compressed data) in
Fig. 9 show that, at higher compression ratios, coherent seismic structures appear with wavelet based compression,
while the GenLOT-based plot exhibits mostly uncoherent noise, and thus does not harm �nal seismic interpretation.
More detailled results of compression on synthetic data are exposed in Duval et al.15

4. CONCLUSIONS

We propose a compression algorithm for seismic data, for raw seismic shots or processed stack sections as well. This
algorithm is based on GenLOT, a class of �lter banks with a regular frequency partition, well suited to seismic data.
The use of well designed �lter banks, matching the properties of the data leads to 2 to 5 dB improvement over
wavelet �lter banks. Future studies will encompass more speci�c designs for the GenLOT �lter banks.
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Figure 4. Wavelet compression SNR comparison for the three datasets
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Figure 5. Wavelet compression ASNR comparison for the three datasets
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