Enjeux et défis des techniques de compression pour les données de simulation massives CORESA 2021

Laurent Duval

with: Lauriane Bouard, Frédéric Payan, Marc Antonini, Christophe Preux

3 novembre 2021

Plan

Context: multimedia versus simulation data, what is different? Issues in simulation: example from geoscience Toward solutions: state-of-the-art Workflow: embedded with compression Compression: methodology and steps Compression: objective and subjective results Simulation: subjective results and better adapted metrics Challenges and opportunities

Context

Compression in simulation: what for?

Flow simulation in a reservoir

On standard multimedia data

A pervasive and transparent paradigm A world of streaming and evanescent binary abstractions (Deeflix, Netzer, SpotS, OCify) Three most common types of objects Audio (essentially 1D) Image (essentially 2D) Video (essentially 2D+1D) Mostly meant for (human) interpretation Knowledge of the human sensory system Wide audience for testing ("all users") Little need for post-processing* Reasonably well-structured data Audio: even sampling Image: cartesian pixel grid (mostly) Video: audio+image at regular frame rates (24/25 fps)

On data-intensive scientific discovery

So-called "fourth paradigm" (Hey, Tolle, Tansley, 2009)

Context

Three different ones: empirical, theoretical, computational science (no drama)

Tentative layers of "scientific data" object abstraction:

Instrumental (sensors, recording devices, IoT)

Computational (modeling, simulation, avatar, metaverse)

Inferential (statistical model, data science, machine/deep learning)

Mostly meant for (reality) understanding

Often outside human sight range

Sharing in relatively small scientific communities

Important postprocessing or workflows for further data exploitation

Unreasonably ill-structured data

Many in-house or ad-hoc storage structures (e.g. HDF, CDF)

Not sufficiently used for imposing pervasive "formats" (nor well documented)

"The nice thing about standards is that you have so many to choose from; furthermore, if you do not like any of them, you can just wait for next year's model." (Attributed to A. S. Tanenbaum)

Reminders on compression principles

Context

What makes sense can be shrunk: redundacy versus relevancy

Part is predictable (resolution) Part is forgetable (precision)

Main actions

Transform data to enhance the useful (cosine, wavelet, companding) Discard (or reorder) information from useful to less useful Encode binary streams in sensible ways

Goals

Lossless, lossy Quasi-lossless, lossless to lossy, progressive (in resolution or precision) Efficiency, usability Multimedia data

Necessary standardization (mp3: 1991; jpeg: 1992; mpeg4: 1998*) Small-to-medium size (fits on a "drive") Many objective/subjective models and metrics In one equation: $I - \hat{I} = i$ (integer)

Data-intensive science

Storage and HPC inflation Bigger size (sometimes fit on several drives*) Way less objective/subjective models and metrics In a second equation: $4F - \widehat{4F} = 4F$ (quadruple-precision floating-point) Geophysics in 2012: 2-3 months to sort (byte-swapping*)

Computations to train largest NLP models: increased 300,000 times in 6 years (April 2021) GPT-4: 100 trillion parameters, "five hundred times" larger than GPT-3 Microscopy (TEM, SEM): 50 Tb/sample, thousands of cell slices (biology*) CERN Large Hadron Collider: 90+25 petabytes/year (physics) SKA (Square Kilometre Array: 300 petabytes/year in 2023 HL-LHC (High Luminosity-Large Hadron Collider): 1 exabyte in 2026 Climatology: "[Coupled Model Intercomparison Project (CIMP6)] entire project is estimated to release about 20 to 40 petabytes of data from more than 20 climate models"

Quite often, massive simulations produce

more data than we can store* more quickly than we can write more data than they can share* more data than we can pay for (material, energetic, legal)

Geological data Section of sedimentary basin

Issues in simulation

Geological data Section of sedimentary basin

Issues in simulation

Issues in simulation

Structure: Corner Point Grid format (CPG)						

Categorical (low dynamic)

(discrete-integer/cell)

Issues in simulation

Structure: Corner Point Grid format (CPG)					
Pillar extremities	2D	(x,y,z) coordinates			

Issues in simulation

Issues in simulation

Structure: Corner Point	Grid format (CPG)
Cell activity	3D

Categorical (low dynamic)

(x, y, z) coordinates relative (boolean/cell)

(discrete integer/coll)

Issues in simulation

Properties (\mathbb{R})	3D	(floating-point/cell)	

Issues in simulation

Properties (\mathbb{R})	3D
Porosity (high dynamic)	

(floating-point/cell)	

(discrete-integer/cell)

Issues in simulation

Properties (\mathbb{R})	3D
Permeability (high dynamic)	

(floating-point/cell)	

(discrete-integer/cell)

Issues in simulation

Properties (\mathbb{N})	3D		
Categorical (low dynar	nic)	(discrete-integer/cell)	

Issues, compressed

Issues in simulation

72 hours simulation on an average scientific laptop

• Cappello, 2019 Scientific data • Lindstrom, 2014 compression • Baker, 2019 • Durlofsky, 2012 • Li. 2000 Us? • Qi, 2009 Upscaling Volume mesh in compression geosciences

Toward solutions

Toward solutions

Toward solutions

0.3 0.35 0.4

- Developed for simulation
- Not for storage

Isenburg, 2003 •

SINTEF1

- Krivograd, 2008 •
- Lindstrom, 2008 •

Toward solutions

• Cappello, 2019

- Lindstrom, 2014
- Baker, 2019

	Preprocess	Blocking		Transformation	Quantization	Encoding
SZ	float to int	flatten array		prediction	uniform	Huffman
ZFP		subblock		fixed mantissa/subblock, DCT	Zerot	ree
Refinable precision						

Scientific data

compression

Toward solutions

• Cappello, 2019

- Lindstrom, 2014
- Baker, 2019

	Preprocess	Blocking	Transformation	Quantization	Encoding	
\mathbf{SZ}	float to int	flatten array	prediction	uniform	Huffman	
\mathbf{ZFP}		subblock	fixed mantissa/subblock, DCT	Zerot	ree	
Refinable precision						
HexaShrink	float to int		Dyadic wavelet	Zerotree		
Refinable resolution & precision						

Scientific data

compression

Toward solutions

• Cappello, 2019

- Lindstrom, 2014
- Baker, 2019

	Preprocess	Blocking	Transformation	Quantization	Encoding		
\mathbf{SZ}	float to int	flatten array	prediction	uniform	Huffman		
\mathbf{ZFP}		subblock	fixed mantissa/subblock, DCT	Zerot	ree		
Refinable precision							
HexaShrink	float to int		Dyadic wavelet	Zerot	ree		
Refinable resolution & precision							

Scientific data

compression

Generic simulation workflow

Workflow

Workflow

Workflow

Structure						
Pillar extremities	Surface points	2D morphological wavelet				
Node altitudes	1D data	Non linear $1D$ wavelet				
Cell activity	3D data (boolean)					
Properties	3D data	3D wavelet				

Initial data

Motivations:

- Structure & faults preservation
- Properties coherency at lower resolutions

http://www.laurent-duval.eu/

opus-hexashrink-multiscale-mesh-representation-compression-wavelet-modelet.
html

Initial mesh

Workflow

Structure Pillar extremities Node altitudes

Cell activity Properties $\begin{array}{l} {\rm Surface \ points} \\ 1D \ {\rm data} \end{array}$

3D data (boolean) 3D data $2D\ {\rm morphological}\ {\rm wavelet}\ {\rm Non\ linear}\ 1D\ {\rm wavelet}$

3D wavelet

Initial mesh

Workflow

Structure Pillar extremities Node altitudes

Cell activity Properties

3D data (boolean) 3D data $2D\ {\rm morphological}\ {\rm wavelet}\ {\rm Non\ linear}\ 1D\ {\rm wavelet}$

3D wavelet

Generated from Analysis (An.) output

Workflow

Structure Pillar extremities Node altitudes

Cell activity Properties

3D data (boolean) 3D data $2D\ {\rm morphological}\ {\rm wavelet}\ {\rm Non\ linear}\ 1D\ {\rm wavelet}$

3D wavelet

Generated from Analysis (An.) output

Workflow

Structure Pillar extremities Node altitudes

Cell activity Properties $\begin{array}{l} {\rm Surface \ points} \\ 1D \ {\rm data} \end{array}$

3D data (boolean) 3D data $2D\ {\rm morphological}\ {\rm wavelet}\ {\rm Non\ linear}\ 1D\ {\rm wavelet}$

 $3D \,\, {\rm wavelet}$

Generated from Analysis (An.) output

HexaShrink coding

Compression steps

HexaShrink coding

Compression steps

HexaShrink coding

Compression steps

Compression steps

2	5	8	12	20	25	27	3
6	4	9	22	20	19	25	2
1	3	25	20	24	22	17	1
4	11	21	23	20	20	14	1
8	5	2	3	22	18	21	1
10	15	8	11	4	5	22	1!
15	12	7	8	4	7	5	2
13	17	15	11	6	5	9	2!

Original data

Compression steps

Res. 0

2	5	8	12	20	25	27	31
6	4	9	22	20	19	25	28
1	3	25	20	24	22	17	18
4	11	21	23	20	20	14	15
8	5	2	3	22	18	21	13
10	15	8	11	4	5	22	15
15	12	7	8	4	7	5	20
13	17	15	11	6	5	9	25

2	5	8	12	20	25	27	3
6	4	9	22	20	19	25	2
1	3	25	20	24	22	17	1
4	11	21	23	20	20	14	1
8	5	2	3	22	18	21	1
10	15	8	11	4	5	22	1
15	12	7	8	4	7	5	2
13	17	15	11	6	5	9	2

Original data

Compression steps

Res. 0

2	5	8	12	20	25	27	31
6	4	9	22	20	19	25	28
1	3	25	20	24	22	17	18
4	11	21	23	20	20	14	15
8	5	2	3	22	18	21	13
10	15	8	11	4	5	22	15
15	12	7	8	4	7	5	20
13	17	15	11	6	5	9	25

4	13	21	28	-1	-9	-2	-4
5	22	22	16	-5	2	1	-1
10	6	12	18	-1	-2	2	8
14	10	6	15	-1	2	-1	-1
-2	-6	3	3	-5	9	-6	-1
-2 -6	-6 1	3 3	3 3	-5 5	9 7	-6 2	-1 0
-2 -6 -6	-6 1 -7	3 3 16	3 3 -2	-5 5 8	9 7 2	-6 2 5	-1 0
-2 -6 -6 -2	-6 1 -7 -6	3 3 16 0	3 3 -2 -5	-5 5 8 7	9 7 2 -5	-6 2 5 -4	-1 0 1

1 decomposition level

Compression steps

Res. 0

Res. -1

1	3	25	20	24	22	17	18			
4	11	21	23	20	20	14	15			
8	5	2	3	22	18	21	13			
LO	15	8	11	4	5	22	15			
15	12	7	8	4	7	5	20			
L3	17	15	11	6	5	9	25			
4		1	13		21		28			
5		2	2	22		16				

6 12 18

15

10

14 10

2 5 8 12 20 25 27 31 6 4 9 22 20 19 25 28

-4
-1
8
-1
-1
-1 -1
-1 -1 0

1 decomposition level

Compression steps

Res. 0

Res. -1

10	15	8	11	4	5	22	15	
15	12	7	8	4	7	5	20	
13	17	15	11	6	5	9	25	
						_		
4		1	12		1	2	29	
		10						
	-	22		22		16		
5		22		22		10		
				10		10		
10		(9	1	2	1	0	

14 10

2 5 8 12 20 25 27 31 6 4 9 22 20 19 25 28 1 3 25 20 24 22 17 18

4 11 21 23 20 20 14 15 8 5 2 3 22 18 21 13

11	22	-13	-1	-1	-9	-2	-4
10	13	4	-7	-5	2	1	-1
-5	6	9	-12	-1	-2	2	8
-5	5	-1	4	-1	2	-1	-1
-2	-6	3	3	-5	9	-6	-1
-2 -6	-6 1	3 3	3 3	-5 5	9 7	-6 2	-1 0
-2 -6 -6	-6 1 -7	3 3 16	3 3 -2	-5 5 8	9 7 2	-6 2 5	-1 0 1

2 decomposition levels

Compression steps

Res. 0

Res. -1

Res. -2

4	13	21	2
5	22	22	1
10	6	12	1
14	10	6	1

11

10

22

13

2 5 8 12 20 25 27 31 6 4 9 22 20 19 25 28 1 3 25 20 24 22 17 18

 4
 11
 21
 23
 20
 20
 14
 15

 8
 5
 2
 3
 22
 18
 21
 13

 10
 15
 8
 11
 4
 5
 22
 15

 15
 12
 7
 8
 4
 7
 5
 20

 13
 17
 15
 11
 6
 5
 9
 25

11	22	-13	-1	-1	-9	-2	-4
10	13	4	-7	-5	2	1	-1
-5	6	9	-12	-1	-2	2	8
-5	5	-1	4	-1	2	-1	-10
-2	-6	3	3	-5	9	-6	-1
-2 -6	-6 1	3 3	3 3	-5 5	9 7	-6 2	-1 0
-2 -6 -6	-6 1 -7	3 3 16	3 3 -2	-5 5 8	9 7 2	-6 2 5	-1 0 1
-2 -6 -6 -2	-6 1 -7 -6	3 3 16 0	3 3 -2 -5	-5 5 8 7	9 7 2 -5	-6 2 5 -4	-1 0 1

2 decomposition levels

Compression steps

Res. 0

Res. -1

4	13	21	2
5	22	22	1
10	6	12	1
14	10	6	1

11

10

22

13

2 5 8 12 20 25 27 31 6 4 9 22 20 19 25 28 1 3 25 20 24 22 17 18

 4
 11
 21
 23
 20
 20
 14
 15

 8
 5
 2
 3
 22
 18
 21
 13

 10
 15
 8
 11
 4
 5
 22
 15

 15
 12
 7
 8
 4
 7
 5
 20

 13
 17
 15
 11
 6
 5
 9
 25

11	22	-13	-1	-1	-9	-2	-4
10	13	4	-7	-5	2	1	-1
-5	6	9	-12	-1	-2	2	8
-5	5	-1	4	-1	2	-1	-16
-2	-6	3	3	-5	9	-6	-1
-6	1	3	3	5	7	2	0
-6	-7	16	-2	8	2	5	1
-2	-6	0	-5	7	-5	-4	1

2 decomposition levels

Subbands coding with generic lossless methods

Res. -2

HexaShrink lossy

5 MSB $_Z$ 2 5 8 12 20 25 27 31 6 4 9 22 20 19 25 28 1 3 25 20 24 22 17 18

4 11 21 23 20 20 14 15 8 5 2 3 22 18 21 13 10 15 8 11 4 5 22 15

Res. 0

Res. -1

Res. -2

15	12	7	8	4	7	5	20
13	17	15	11	6	5	9	25
4	1	1	3	21		2	8
5	5	22		2	2	1	6
1	0	6		12		18	
1	4	1	0	б		15	
_							
	1			2	2		
10				13			

11	22	-13	-1	-1	-9	-2	-4
10	13	4	-7	-5	2	1	-1
-5	6	9	-12	-1	-2	2	8
-5	5	-1	4	-1	2	-1	-16
-2	-6	3	3	-5	9	-6	-1
-6	1	3	3	5	7	2	0
-6	-7	16	-2	8	2	5	1
-2	-6	0	-5	7	-5	-4	1

Most Significant Bit	4	0
	3	1
5 MSB $_Z$	2	0
	1	1
Least Significant Bit	0	1

Compression steps

11

5 MSB_Z 2 5 8 12 20 25 27 31 6 4 9 22 20 19 25 28 1 3 25 20 24 22 17 18

 4
 11
 21
 23
 20
 20
 14
 15

 8
 5
 2
 3
 22
 18
 21
 13

 10
 15
 8
 11
 4
 5
 22
 15

 15
 12
 7
 8
 4
 7
 5
 20

 13
 17
 15
 11
 6
 5
 9
 25

Res. 0

Res. -1

Res. -2

10	22	-12	0	0	-8	-2	-4
10	12	4	-6	-4	2	0	0
-4	6	8	-12	0	-2	2	8
-4	4	0	4	0	2	0	-16
-2	-6	2	2	-4	8	-6	0
-2 -6	-6 0	2 2	2 2	-4 4	8 6	-6 2	0 0
-2 -6 -6	-6 0 -6	2 2 16	2 2 -2	-4 4 8	8 6 2	-6 2 4	0 0 0

Most Significant Bit	4	0
	3	1
4 MSB_Z	2	0
	1	1
Least Significant Bit		1

Compression steps

10

5 MSB $_Z$ 2 5 8 12 20 25 27 31 6 4 9 22 20 19 25 28 1 3 25 20 24 22 17 18

4 11 21 23 20 20 14 15 8 5 2 3 22 18 21 13 10 15 8 11 4 5 22 15 15 12 7 8 4 7 5 20

Compression steps

10

Res. 0

Res	-1
rtcs.	

13	17	15	11	6	5	9	25
4	\$	1	3	2	1	2	8
5	5	2	2	2	2	1	6
1	0	(5	1	2	1	8
1	4	1	0	(5	1	5

11

10

22

13

		4	M	S	B	Z	
0	4	6	12	16	21	25	30
4	3	8	22	17	16	24	27
0	3	24	21	22	21	16	18
3	11	21	24	19	20	14	16
6	4	2	3	19	17	20	14
8	14	9	12	3	5	22	16
14	13	3 7	10	4	8	4	20
13	8 18	8 16	13	6	6	10	26

10	22	-12	0	0	-8	-2	-4
10	12	4	-6	-4	2	0	0
-4	6	8	-12	0	-2	2	8
-4	4	0	4	0	2	0	-16
-2	-6	2	2	-4	8	-6	0
-6	0	2	2	4	6	2	0
-6	-6	16	-2	8	2	4	0
-2	-6	0	-4	6	-4	-4	0

Most Significant Bit	4	0
	3	1
4 MSB $_Z$	2	
	1	1
Least Significant Bit		1

Res. -2

5 MSB $_Z$ 2 5 8 12 20 25 27 31 6 4 9 22 20 19 25 28 1 3 25 20 24 22 17 18

4 11 21 23 20 20 14 15 8 5 2 3 22 18 21 13 10 15 8 11 4 5 22 15

22

13

Compression steps

8

Res. 0

Res	-1

Res. -2

~~	~~~	~				_	
15	12	7	8	4	7	5	20
13	17	15	11	6	5	9	25
4	\$	1	3	2	1	2	8
5	5	22		2	2	1	.6
1	10		5	1	2	1	8
1	4	1	0	e	5	1	5

11

10

4 MSB $_Z$													
0	4	6	12	16	21	25	30						
4	3	8	22	17	16	24	27						
0	3	24	21	22	21	16	18						
3	11	21	24	19	20	14	16						
6	4	2	3	19	17	20	14						
8	14	9	12	3	5	22	16						
14	13	7	10	4	8	4	20						
13	18	16	13	6	6	10	26						

8	20	-12	0	0	-8	0	-4
8	12	4	-4	-4	0	0	0
-4	4	8	-12	0	0	0	8
-4	4	0	4	0	0	0	-16
0	-4	0	0	-4	8	-4	0
0 -4	-4 0	0 0	0 0	-4 4	8 4	-4 0	0 0
0 -4 -4	-4 0 -4	0 0 16	0 0 0	-4 4 8	8 4 0	-4 0 4	0 0 0

Most Significant Bit	4	0
	3	1
3 MSB_Z	2	0
	1	1
Least Significant Bit		1

5 MSB $_Z$

2 5 8 12 20 25 27 31

6 4 9 22 20 19 25 28

1 3 25 20 24 22 17 18

4 11 21 23 20 20 14 15

8 5 2 3 22 18 21 13

10 15 8 11 4 5 22 15 15 12 7 8 4 7 5 20

13 17 15 11 6 5 9 25

Compression steps

8

Res. 0

Res. -1

Res. -2

4	13	21	28
5	22	22	16
10	6	12	18
14	10	6	15

11	22
10	13

4 MSB $_Z$											3	Μ	SI	B	Z	
	0	4	6	12	16	21	25	30	0) (2	10	12	20	25	
	4	3	8	22	17	16	24	27	0) (6	22	16	16	27	
	0	3	24	21	22	21	16	18	0) :	23	21	20	20	14	
	3	11	21	24	19	20	14	16	1	1 1	1 21	23	20	20	14	
	6	4	2	3	19	17	20	14	0) (0 (3	17	15	18	
	8	14	9	12	3	5	22	16	3	3 1	1 7	11	3	5	22	
	14	13	7	10	4	8	4	20	10	0 1	2 5	9	3	9	2	
	13	18	16	13	6	6	10	26	13	2 1	8 17	13	5	7	10	

8	20	-12	0	0	-8	0	-4
8	12	4	-4	-4	0	0	0
-4	4	8	-12	0	0	0	8
-4	4	0	4	0	0	0	-16
0	-4	0	0	-4	8	-4	0
0 -4	-4 0	0 0	0 0	-4 4	8 4	-4 0	0 0
0 -4 -4	-4 0 -4	0 0 16	0 0 0	-4 4 8	8 4 0	-4 0 4	0 0 0

Most Significant Bit	4	0
	3	1
3 MSB_Z	2	0
	1	1
Least Significant Bit		1
Least Significant Bit	$1 \\ 0$	1

5 MSB $_Z$

2 5 8 12 20 25 27 31

6 4 9 22 20 19 25 28

1 3 25 20 24 22 17 18

4 11 21 23 20 20 14 15

8 5 2 3 22 18 21 13

10 15 8 11 4 5 22 15

15 12 7 8 4 7 5 20

13 17 15 11 6 5 9 25

Compression steps

8

Res. 0

Res. -1

Res. -2

4	13	21	28
5	22	22	16
10	6	12	18
14	10	6	15

11 22 10 13

4 MSB $_Z$											3	Μ	SI	B	Z	
	0	4	6	12	16	21	25	30	0) (2	10	12	20	25	
	4	3	8	22	17	16	24	27	0) (6	22	16	16	27	
	0	3	24	21	22	21	16	18	0) :	23	21	20	20	14	
	3	11	21	24	19	20	14	16	1	1 1	1 21	23	20	20	14	
	6	4	2	3	19	17	20	14	0) (0 (3	17	15	18	
	8	14	9	12	3	5	22	16	3	3 1	1 7	11	3	5	22	
	14	13	7	10	4	8	4	20	10	0 1	2 5	9	3	9	2	
	13	18	16	13	6	6	10	26	13	2 1	8 17	13	5	7	10	

8	16	-8	0	0	-8	0	0
8	8	0	0	0	0	0	0
0	0	8	-8	0	0	0	8
0	0	0	0	0	0	0	-16
0	0	0	0	0	8	0	0
0	0	0	0	0	0	0	0
0	0	16	0	8	0	0	0
0	0	0	0	0	0	0	0

4	0
3	1
2	0
1	1
	1
	4 3 2 1 0

 $5 MSB_Z$

Compression steps

Res. 0

		- 1
Re	es.	-1

Res.	-2
------	----

2	5	8	12	20	25	27	31	
6	4	9	22	20	19	25	28	
1	3	25	20	24	22	17	18	
4	11	21	23	20	20	14	15	
8	5	2	3	22	18	21	13	
10	15	8	11	4	5	22	15	
15	12	7	8	4	7	5	20	
13	17	15	11	6	5	9	25	
				_		_		
4	ŀ	1	3	2	1	2	8	
Ę	5	2	2	2	2	1	6	
1	0	(5	1	2	1	8	
1	4	1	0		5	1	5	

11

10

22

13

	4	1	M	SI	B	Z	
0	4	6	12	16	21	25	30
4	3	8	22	17	16	24	27
0	3	24	21	22	21	16	18
3	11	21	24	19	20	14	16
6	4	2	3	19	17	20	14
8	14	9	12	3	5	22	16
14	13	7	10	4	8	4	20
13	18	16	13	6	6	10	26

	3	3	M	SI	B	Z	
0	0	2	10	12	20	25	3
0	0	6	22	16	16	27	2
0	1	23	21	20	20	14	13
1	11	21	23	20	20	14	13
0	0	0	3	17	15	18	14
3	11	7	11	3	5	22	13
10	12	5	9	3	9	2	13
12	18	17	13	5	7	10	2

8	16	-8	0	0	-8	0	0
8	8	0	0	0	0	0	0
0	0	8	-8	0	0	0	8
0	0	0	0	0	0	0	-16
0	0	0	0	0	8	0	0
0	0	0	0	0	0	0	0
0	0	16	0	8	0	0	0
0	0	0	0	0	0	0	0

	2	2	M	SI	B	Z	
0	0	0	12	2	14	18	100
0	4	4	24	6	10	22	1
0	2	22	22	16	16	12	2
2	10	22	22	16	16	12	2
0	0	0	6	8	8	8	
0	12	6	14	0	0	16	1
6	14	4	8	0	10	0	3
14	22	16	12	2	6	8	2

		8
Significant Bit	4	0
	3	1
2 MSB_Z	2	
_	1	1
Significant Bit		1

Most Significa	ant Bit	4
2 MSB_Z		3 2
Least Significa	ant Bit	

5 MSB_Z

2 5 8 12 20 25 27 31

6 4 9 22 20 19 25 28

1 3 25 20 24 22 17 18

4 11 21 23 20 20 14 15

Compression steps

Res. 0

Re	es.	-1

4	
1.1	

10

Res.	-2
------	----

22

13

4 MSB $_Z$								
0	4	6	12	16	21	25	30	
4	3	8	22	17	16	24	27	
0	3	24	21	22	21	16	18	
3	11	21	24	19	20	14	16	
6	4	2	3	19	17	20	14	
8	14	9	12	3	5	22	16	
14	13	7	10	4	8	4	20	
13	18	16	13	6	6	10	26	

Sig	Sig	Sig	0	0	Sig	0	0
Sig	Sig	0	0	0	0	0	0
0	0	Sig	Sig	0	0	0	Sig
0	0	0	0	0	0	0	Sig
0	0	0	0	0	Sig	0	0
0	0	0	0	0	0	0	0
0	0	Sig	0	0	0	0	0
0	0	0	0	0	0	0	0

3 MSB_Z

0 0 2 10 12 20 25 31

0 0 6 22 16 16 27 29

0 1 23 21 20 20 14 18

1 11 21 23 20 20 14 18

0 0 0 3 17 15 18 14 3 11 7 11 3 5 22 18

10 12 5 9 3 9 2 18

12 18 17 13 5 7 10 26

Progressive coding with Zerotree:

 $2 MSB_{Z}$

0 0 0 12 2 14 18 30

0 4 4 24 6 10 22 26

0 2 22 22 16 16 12 20

2 10 22 22 16 16 12 20

0 0 0 6 8 8 8 8

0 12 6 14 0 0 16 16

6 14 4 8 0 10 0 16

14 22 16 12 2 6 8 24

- EZW (Shapiro, J., 1993)
- SPIHT (Said, A., Pearlman, W., 1996)

5 MSB_Z

2 5 8 12 20 25 27 31

6 4 9 22 20 19 25 28

1 3 25 20 24 22 17 18

4 11 21 23 20 20 14 15

8 5 2 3 22 18 21 13

10 15 8 11 4 5 22 15

15 12 7 8 4 7 5 20

Compression steps

Res. 0

Res. -1

11

10

Res -2

12 11	12 11	0 5	9 2:
4	13	21	28
5	22	22	16
10	6	12	18
14	10	6	15

22

13

Sig	Sig	Sig		0	Sig
Sig	Sig		0	0	0
		Sig	Sig		
	0	0			
				0	Sig

0 0 0

4 MSB_Z

0 4 6 12 16 21 25 30

4 3 8 22 17 16 24 27

0 3 24 21 22 21 16 18

3 11 21 24 19 20 14 16

6 4 2 3 19 17 20 14

8 14 9 12 3 5 22 16

14 13 7 10 4 8 4 20

13 18 16 13 6 6 10 26

3 MSB_Z

0 0 2 10 12 20 25 31

0 0 6 22 16 16 27 29

0 1 23 21 20 20 14 18

1 11 21 23 20 20 14 18

0 0 0 3 17 15 18 14

3 11 7 11 3 5 22 18

10 12 5 9 3 9 2 18

12 18 17 13 5 7 10 26

0

0 0 0 0

0 0 0 0

Progressive coding with Zerotree:

 $2 MSB_{Z}$

0 0 0 12 2 14 18 30

0 4 4 24 6 10 22 26

0 2 22 22 16 16 12 20

2 10 22 22 16 16 12 20

0 0 0 6 8 8 8 8

0 12 6 14 0 0 16 16

6 14 4 8 0 10 0 16

14 22 16 12 2 6 8 24

- EZW (Shapiro, J., 1993)
- SPIHT (Said, A., Pearlman, W., 1996)

5 MSB_Z

2 5 8 12 20 25 27 31

6 4 9 22 20 19 25 28

1 3 25 20 24 22 17 18

4 11 21 23 20 20 14 15

8 5 2 3 22 18 21 13

10 15 8 11 4 5 22 15

15 12 7 8 4 7 5 20

13 17 15 11 6 5 9 25

Compression steps

Res. 0

Res	i2

4	13	21	
5	22	22	
10	6	12	
14	10	6	
1	2	2	

10

13

Sig	Sig	Sig	Ztr	0	Sig		
Sig	Sig	Ztr	0	0	0		
Ztr	Ztr	Sig	Sig			0	Sig
Ztr	0	0	Ztr			0	Sig
				0	Sig	0	0
				0	0	0	0
		Sig	0	0	0		
		0	0	0	0		
		Sig 0	0	0 0 0	0 0 0	0	0

4 MSB_Z

0 4 6 12 16 21 25 30

4 3 8 22 17 16 24 27

0 3 24 21 22 21 16 18

3 11 21 24 19 20 14 16

6 4 2 3 19 17 20 14

8 14 9 12 3 5 22 16

14 13 7 10 4 8 4 20

13 18 16 13 6 6 10 26

3 MSB_Z

0 0 2 10 12 20 25 31

0 0 6 22 16 16 27 29

0 1 23 21 20 20 14 18

1 11 21 23 20 20 14 18

0 0 0 3 17 15 18 14

3 11 7 11 3 5 22 18

10 12 5 9 3 9 2 18

12 18 17 13 5 7 10 26

Progressive coding with Zerotree:

 $2 MSB_{Z}$

0 0 0 12 2 14 18 30

0 4 4 24 6 10 22 26

0 2 22 22 16 16 12 20

2 10 22 22 16 16 12 20

0 0 0 6 8 8 8 8

0 12 6 14 0 0 16 16

6 14 4 8 0 10 0 16

14 22 16 12 2 6 8 24

- EZW (Shapiro, J., 1993)
- SPIHT (Said, A., Pearlman, W., 1996)

HexaShrink with transform

HexaShrink with transform

Transform and metrics

Compression steps

Compandor

$$\Lambda_{nbits}(P) = round \left(\frac{\lambda(P) - \lambda(\min P)}{\lambda(\max P) - \lambda(\min P)} \times (2^{nbits} - 1) \right),$$

with $\lambda(P) = \log (P + 1),$

Expandor

$$\hat{P} = \mathbf{V}_{nbits}(\Lambda_{nbits}(P)) = \mathsf{Y}(\frac{\Lambda_{nbits}(P)}{(2^{nbits} - 1)} \times (\lambda(\max P) - \lambda(\min P)) + \lambda(\min P)),$$

$$with \quad \mathsf{Y}(P) = \exp(P) - 1.$$

Output (

Output

Compression (objective)

Benchmark

Compression (objective)

Compression (objective)

On mesh#6

Fe	atures		Compres	ssion ratio	
Faults	File Size	Level	gzip (1992)	bzip2 (1996)	LZMA (1998)
		none	1.88	2.25	3.04
Yes	64.27MB				

- Lossless coders provide good performance
- HexaShrink improves further compression rate
- Less significant improvements above two levels

Compression (objective)

On mesh#6

Fe	atures				
Faults	File Size	Level	gzip (1992)	bzip2 (1996)	LZMA (1998)
		none	1.88	2.25	3.04
Yes	64.27MB				

- Lossless coders provide good performance
- HexaShrink improves further compression rate
- Less significant improvements above two levels

Compression (objective)

On mesh#6

Features		Compression ratio				
Faults	File Size	Level	gzip (1992)	bzip2 (1996)	LZMA (1998)	
		none	1.88	2.25	3.04	
Yes	64.27MB	1.00	2.70	3.17	3.71	

- Lossless coders provide good performance
- HexaShrink improves further compression rate
- Less significant improvements above two levels

Compression (objective)

On mesh#6

Features		Compression ratio				
Faults	File Size	Level	gzip (1992)	bzip2 (1996)	LZMA (1998)	
		none	1.88	2.25	3.04	
Yes	64.27MB	1.00	2.70	3.17	3.71	
		2.00-6.00	2.84 - 2.86	3.39 - 3.42	3.90 - 3.93	

- Lossless coders provide good performance
- HexaShrink improves further compression rate
- Less significant improvements above two levels

Compression (objective)

On all meshes

Moch	Features		Compression ratio				
IVICSII	Faults	File Size	Level	gzip (1992)	bzip2 (1996)	LZMA (1998)	
1	No	$4.62\mathrm{MB}$	none 1 2.00–4.00	3.73 5.62 5.67	4.98 6.07 6.12–6.13	6.43 7.52 7.42–7.4 4	
2	No	$42.46\mathrm{MB}$	none 1 2.00–6.00	3.23 6.49 7.48–7.58	8.41 10.82 12.75–13.03	10.12 11.81 13.35	
3	Yes	$1.46\mathrm{MB}$	none 1 2.00–4.00	2.67 3.88 4.03–4.05	2.99 4.70 4.92–4.93	3.63 5.24 5.47–5.48	
4	Yes	7.88 MB	none 1 2.00–4.00	1.83 2.64 2.76	1.89 3.06 3.22–3.23	2.21 3.48 3.64–3.65	
5	Yes	$22.73\mathrm{MB}$	none 1 2.00–4.00	2.46 3.14 3.25–3.26	2.55 2.83 2.91–2.92	3.33 3.71 3.80–3.81	
6	Yes	$64.27\mathrm{MB}$	none 1 2.00–6.00	1.88 2.70 2.84–2.86	2.25 3.17 3.39–3.42	3.04 3.71 3.90–3.93	
7	Yes	$274.57\mathrm{MB}$	none 1 2.00–6.00	2.31 3.31 4.14–4.24	$2.25 \\ 3.53 \\ 4.48 - 4.68$	$3.04 \\ 4.44 \\ 5.54 - 5.73$	
8	Yes	$580.94\mathrm{MB}$	none 1 2.00–7.00	3.20 5.42 5.80–6.72	5.98 7.07 7.63–10.12	12.52 8.90 9.05–10.23	

In-depth analysis for LZMA

Compression (objective)

LZMA efficiency on all components

With Hexashrink decomposition:

- Geometry
 - Efficient
- Other properties

In-depth analysis for LZMA

Compression (objective)

LZMA efficiency on all components With Hexashrink decomposition:

- Geometry
 - Efficient
- Other properties
 - Limited

In-depth analysis for LZMA

Compression (objective)

LZMA efficiency on all components With Hexashrink decomposition:

Geometry

Other properties

Let us explore refinable precision!
HexaShrink lossy/progressive performance

HexaShrink lossy/progressive performance on Lundi

Four property environnements (SPE10, Christie, M. 2001)

HexaShrink lossy/progressive performance on Lundi

Four property environnements (SPE10, Christie, M. 2001)

HexaShrink lossy/progressive with companding: visual results

6.0 Compandor effect: visual results

Simulation (subjective)

Raw

Simulation (subjective)

Res. -0 \approx 72 hours

Simulation (subjective)

11 MSB_Z Res. 0 $4.00 \text{ bits.cell}^{-1}$ SNR = 36.10 dBwc saturation 0.5Res. -1 0 100 **O** 200300 days • Acceptable • Uncorrect Identical Correct Aberrant 100 SNR -50 Res. -2 1510 $\mathbf{5}$ bit budget

Simulation-adapted metrics: is SNR valid?

SNR =
$$10\log_{10}\left(\frac{\sum_{c=1}^{C} P(c)^2}{\sum_{c=1}^{C} (P(c) - \hat{P}(c))^2}\right)$$

Simulation (better adapted metri

On compression challenges in simulation

Challenges

Demanding domains

Compression close to the workflow Integrate physical laws or proxies Devevelop pertinent metrics Require solid benchmarking

Different needs

Compress once, decompress many Data and energy efficient algorithms Random access: by the slice or by the block and many more

On compression opportunities in simulation

A lot of opportunities for DSP/compression people (from digital twins to Metaverse) Visualization, storage, transfer, memory footprint, checkpointing restart, *in situ* analysis... Energetic, economic, ecological

Some people in simulation

may not know well what compression can do (mesh inflation) may have excessive expectation when they know more (all mesh random access)

Toward CaaS: Compression as a Service

Not the best in end-to-end quality, adapted to the overall workflow With added value: old and new references

Natarajan, B. K., Filtering Random Noise from Deterministic Simals via Data Compression, 1995 Sabeti, E., Song, P. X. K., Hero, A. O., Data Discovery Using Lossless Compression-Based Sparse Representation, 2021 Allison H. Baker, National Center for Atmospheric Research (NCAR) Franck Cappello, Argonne National Laboratory Peter Lindstrom, Lawrence Livermore National Laboratory (LLNL) Mark Ainsworth, Oak Ridge National Laboratory

And us? D, Bouard, Peyrot, Antonini, Payan