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Chapitre 2

Wavelet transform for the denoising of
multivariate images

2.1. Introduction

An increasing attention is being paid to multispectral iemfpr a great number
of applications (medicine, agriculture, archeology, fbng coastal management, re-
mote sensing . ..) because many features of the underlyargedtave unique spectral
characteristics that become apparent in imagery when ngewdmbinations of its
different components. Hence, in satellite imaging, a bettealysis of the nature of
the materials covering the surface of the earth is achidvad [00]. Typically, multi-
spectral imaging systems employ radiometers as acquisitgiruments which oper-
ate in different spectral channels. Each one delivers dadighage in a small range
of the visible or non visible wavelengths. As a result, thecsal components form a
multicomponent image corresponding to a single sensed deeally, satellites have
three to a dozen of radiometers. Multispectral sensors aff@luable advantage over
color aerial photographs, thanks to their ability to rea@ftected light in the near in-
frared domain. Near infrared is the most sensitive spedtralain used to map vegeta-
tion canopy properties [GUY 90]. There are several famiiesn-board multispectral
radiometers in the different satellite systems. The firshgxe is SPOT 3 which has
two High Resolution Visible imaging systems (HRV1 and HRVRach HRV is des-
ignated to operate in two sensing modes : a 10 m resolutiomctitamatic” (P) mode
over the range [0.5, 0.73Jm and a 20 m resolution multispectral mode. For the multi-
spectral mode, the first channel is associated with the rf@nge0.59].m, the second
channel with the range [0.61, 0.78n and the third one with the range [0.79, 0.89]
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pm. The SPOT family provides a service continuity with the ngplpd satellite SPOT
4 (launched on March 1998) and SPOT 5 (launched on May 2002)dition to the
former 3 channels, SPOT 4 and SPOT 5 imaging systems gatlageesrin a fourth
channel corresponding to a short wave infrared spectrgler§i.58, 1.75m). The
fourth channel was introduced in order to allow early obagons of plant growth.
Another well-known family of multispectral satellite imiag systems is the set of
Thematic Mapper instruments with the launch of Landsat Bir1 Since April 1999,
Landsat 7 carries the Enhanced Thematic Mapper Plus (ET&hs)ss which are sim-
ilar to the Thematic Mapper sensors with additional festufe ETM+ Landsat scene
is formed by 7 spectral components at a 30 m spatial resal(¢ixcept in the thermal
band with a spatial resolution of 60 m) and a panchromatigamweith 15 m pixel res-
olution. Recently, commercial satellites like Ikonos andd®bird have provided very
high resolution images. For instance, Ikonos 4 (resp. Quiidk collects data with a
level of detail of 4 m (resp. 2.4 or 2.8 m) in 4 spectral rand#ad, green, red, and
near infrared).

Despite the dramatical technological advances in termpatfa and spectral resolu-
tions of the radiometers, data still suffer from severalrddgtions. For instance, the
sensor limited aperture, aberrations inherent to optigstesns and mechanical vibra-
tions create a blur effect in remote sensing images [JAII83)ptical remote sensing
imagery, there are also many noise sources. Firstly, thebeuwf photons received
by each sensor during the obturation time may fluctuate aritsraverage implying
a photon noise. A thermal noise may be caused by the elecsrarfithe recording
and the communication channels during the data downlinKimigrmittent satura-
tions of any detector in a radiometer may give rise to an isigelnoise whereas a
structured periodic noise is generally caused by intenfeze between electronic com-
ponents. Detector striping (resp. banding) are conse@seasfccalibration differences
among individual scanning detectors (resp. from scarcéms Besides, component-
to-component misregistration may occur : correspondixglpiin different compo-
nents are not systematically associated with the samédquosit the ground.

As a result, it is mandatory to apply deblurring, denoising geometric corrections
to the degraded observations in order to fully exploit tHerimation they contain. In
this respect, it is used to distinguish between on-boardoarground processing. In-
deed, on-board procedures should simultaneously fuléltiene constraints and low
mass memory requirements. The involved acquisition bésrare high (especially for
very high resolution missions) and hence, they complidaesbftware implementa-
tion of enhancement processing. This is the reason why ASfpl{cation-Specific
Integrated Circuit) hardware circuits are employed. Suthoard circuits enable very
basic processing since they present a lower performanoegtioaind-based ones. For
instance, Landsat ETM+ raw data are corrected for scan iieettbn and band align-
ment only. No radiometric or geometric correction is appli€onsequently, most of
the efforts for enhancing the data are performed after tieegption at the terrestrial
stations. In this context, denoising is a delicate taskesih@aims at attenuating the
noise level while maintaining the significant image featuit®enerally, the focus is
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put on additive Gaussian noise. In this respect, many waake been carried out con-
cerning single-component images. The pionnering ones heased on linear spatial
filters and nonlinear ones [JAI 89, PIT 90]. In parallel togbefforts, a gain in per-
formance can be achieved by attenuating the noise in a tnamsfomain in which
the image representation yields a tractable statisticalattiog. The seminal work of
Donoho has shown the potentialities of the Wavelet TransfM/T) for reducing a
Gaussian additive noise thanks to its sparsity and deetioelproperties [DON 93].
As a consequence, several wavelet-based image denoisthgdsevere investigated.
The objective of this work is to give an overview of the modevant on-ground
wavelet-based noise reduction methods devoted to mulpooent images. Two ap-
proaches can be considered. The first one consists of indep#y applying any
monochannel noise reduction method to each componentougth its principle is
simple, this approach suffers from a serious drawback ase$ echot account for the
cross-component dependences. This has motivated theodaweht of an alternative
approach in which the noisy components are jointly proakdsebroad outline, it is
also possible to classify all the denoising methods (wleatthey are componentwise
or multivariate ones) into non Bayesian and Bayesian metHeal the latter category,
a prior distribution model is adopted for the unknown image.

This chapter is organized as follows. Notations and the rebtien model are pre-
sented in Section 2.2. Section 2.3 is a concise overview oreleatransforms and
filter banks. Componentwise and multichannel denoisinghods are presented in
Section 2.4 : a wide panel of approaches is tackled (wabelséd, Bayesian estima-
tion, ...). Finally, some comparisons are drawn in Secti@nti2fore concluding the
chapter with Section 2.6.

2.2. Observation model

This section is devoted to the characterization of multicteh satellite images.

2.2.1. Observed images

The “clean” unknown multicomponent image (k), ..., s®)(k))xex, Where
K c Z? is a set of spatial indices, consistsBfimages corresponding 8 spectral
bands captured b§ sensors. The notation® (k) thus designates the intensity value
of the pixel at positiork in the b-th image component as represented in Fig. 2.1.

To better figure out the multichannel context, Fig. 2.2 digplb components of
a Landsa® image. As can be noticed, image components share commatus#s,
some details being present in specific spectral bands ohlg. @henomenon can be
explained by the fact that some sensors are, for examplerladtie to capture vegeta-
tion whereas others are calibrated for soils. This is oneudfigpectral image specific
properties that should be taken into account in the desigmazfessing methods.
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s

Figure 2.1. In red, a pixel at spatial positiok in the b-th image component.

Unfortunately, the observed images denoted By (k))ixcx, - .., (r®) (k))kex
are subject to various degradations which are detailedeiméxt section.

2.2.2. Degradation model

The observed images are corrupted by noises coming frorareliff sources
[LAN 86] : atmospheric, sensor detector/preamplifier andrdization. In spite of the
various statistical distributions of these noise sourttesglobal noise present in ac-
quired data can be realistically modelled by an additiveozaean spatially white
Gaussian noise [COR 03, ABR 02] thus leading to the followmagdel :

voe{l,...,BlvkeK, k) =s®%) +n®K). (2.1)

Following a multivariate approach, we define the unknowrtaesignals, the vector
noisen and the vector observatian as

sk) 2 [sV(k),...,sB®K)T
Vk € K, nk) £ pOK),...,n®K)T
rk) 2 [FrOK),...,r® )"

and, consequently, Equation (2.1) can be reexpressed mtweconcise form as
vk € K, r(k) = s(k) + n(k) (2.2)

wheren is an i.i.d. zero-mean Gaussian multivariate noise withadance matrix
'™ ¢ RE*B, This matrix can take different forms, three of which willtcia our
attention :

1) When the noise is uncorrelated from a component to anotitertihe same
varianceo? in each channel, the matrix takes the following forrﬁgf‘) = o2 1p,
wherel g denotes the identity matrix of sizé x B.

2) When the noise is uncorrelated with various noise levetherspectral bands,
we havel'™ = Diag(o2,...,0%).
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Figure 2.2. 6 components of a Landsatsatellite image.
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3) Finally, a non-diagond]‘é“) matrix accounts for cross-channel correlations be-

1 p .. p
. 1
tween co-located noise samples. One can chb§8e = o2 | P,
p .. p 1

wherep € (0, 1] is the correlation factor between two different noise congas.

Our objective is thus to perform a multispectral image dsingiunder the considered
assumptions. In this respect, we will see that the use of &isoale linear transform
such as the wavelet decomposition may be of great use.

2.3. An overview of discrete wavelets and multiscale transforms
2.3.1. Historical remarks

A discrete 1D signat with location indexk can be classically written as the fol-
lowing linear expansion :
> (K)o,

kEZ

whered represents the discrete (Kronecker) delta sequence tbeat@. While this
representation yields optimal sample location, corredpmnto the canonical basis,
it lacks in providing insights to the inherent signal sturetwhich are beneficial to
further processing. Due to the approximate linear naturaariy physical processes,
signal processing techniques have endeavored to employakihwa other suitable
linear signal representations, such as the Fourier tremsfonder some technical
assumptions, the Fourier transform yields the followingamsion of the signal :

Vv € [0,1), R(v) = Zr(k) exp(—12mkv).
kEZ

Although widely used, the Fourier transform does not howallews us to enlighten
the time behaviour of the signal. For signals possessingtaicgegularity as well as
singularities, localized representations called wasgehetve generated a tremendous
interest in the past 20 years. The story of wavelets is dgtakler, since it originated

a century ago in a famous paper by A. Haar [HAA 10], who considelecomposi-
tions of functions into uniformly convergent series. It engrally considered that dis-
crete wavelets, in their modern form, have emerged in th€'s9Blost of the related
works have been nicely gathered in [HEI 06]. We follow hereegw@tion of wavelet
representations based on filter banks, based on the pingeeork by Croisieret al.
[CRO 76].



Wavelet transform for the denoising of multivariate images 15

2.3.2. 2-band andM -band filter banks

We consider square summable sequeribggk])rez with m € {0,..., M — 1}
representing the impulse responses\bffilters. We often characterize each filter by
its frequency responsH,,,, which is the Fourier transform of its impulse response.
The basic building block for a 2-band filter bank based deamsition is illustrated
in Fig. 2.3 : the digital signat(k) is decomposed into two frequency bands by a
set of filtersH, et H; followed by a decimation by a factor of 2, leading to a pair
of coefficient sequences, o(k))rez and(ri,1(k))rez. The set of analysis filter®,
and H, with its associated decimators is called an analysis fillekbA reconstructed
signalr is obtained fronr ( andr, ; after a factor of 2 upsampling operator followed

by filtering through synthesis filteld, et H, and summation.

r(k) Ho 12>~ 12 > Ho 7(k)

)
—>
7‘1,1(1€) =

Figure 2.3. Analysis/synthesis 2-band filter bank.

The overall construction satisfies the Perfect Reconstnugtroperty (PR) when
the signals® andr are equal (eventually up to an integer delay and a non-zeto mu
tiplicative factor, which can be incorporated in the filterefficients). Such a prop-
erty is verified for non trivial filter families (i.e. includg filters with several de-
lays) [SMI 84], whose properties are summarized for inandMEY 90, COH 92,
DAU 92, MAL 08]. A traditional example is given by the Haar dyss filter bank
with analysis filters, and H; of length 2 :

(h0[0]7h0[1]) = (17 1)

Hg\H
[\

(h1[0], ha[1]) = VR

and synthesis filter&l, and H, obtained by symmetry front/, and H, around the
time origin.

_ Due to the relatively strong constraints imposed on thefitters H, H;, ﬁo and
H, to satisfy the PR property, some authors have proposed ageorzal structure,
named) -band filter banks, based on two sets\éf> 2 analysis and synthesis filter
banks, represented in Fig. 2.4.
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Figure 2.4. Analysis/synthesi&/-band filter bank.

Similarly, the PR property may be obtained from an appraog@ichoice of analysis
and synthesis filters [VAI 87], with improved flexibility irhé design of the filters,
since the 2-band case now represents a special instai¢ebaind filter banks. More-
over, the latter encompasses a large class of standard tiraeesforms,e.g. block
transforms.

2.3.3. Filter bank based multiresolution analysis

Figure 2.5. 2-level M -band wavelet analysis/synthesis wavelet decomposition.

A multiresolution analysis of a signal consists of a decositan where the sig-
nal is represented at different scales, allowing us to seme easily its fine to coarse
structures. It has been proved especially useful in sigizavery (denoising, deconvo-
lution and reconstruction) as well as in data compressiopraktical multiresolution
analysis is obtained by cascading the basic analysis fittek block. For the generic
M-band filter bank case, assume thigtandH ,, _; are a low-pass and a high-pass fil-
ter respectively, whereal, ..., Hy/—o are band-pass filters. The low-pass filtering
by H, followed by decimation yields a first subsampled approxiomof the origi-
nal signal, which may be further decomposed by the same lii¢tek, as represented
in Fig. 2.5. The band-pass and high-pass branches yieldusuddsd versions of the
signal details in different frequency bands, complementarthe low-pass approxi-
mation.
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From the continuous-time viewpoint, such a multiresolugmalysis can be stud-
ied in the spacd.?(R) of square integrable functions. Successive iterationshef t
basic M -band filter bank on the low-pass output is interpreted ascqopations at
resolution levelj. The approximation spaces correspond to a decreasingrssxjoé
nested subspacé¥’ ),z of L?(RR), associated with one scaling function (or father
wavelet), € L2(R). The multiresolution analysis then corresponds to priastof
the continuous-time signal onto subspa@@5,.,.) jcz,me{1,...,. -1}, @ssociated with
(M — 1) mother wavelets),,, € L%(R), m € {1,..., M — 1} [STE 93]. These func-
tions are solutions of the following scaling equations :

1 t e
it (7) = 2 (e =)
Form € {0,...,M — 1}, j € Z andk € Z, define the family of functions

Gk (t) = M2, (M7t — k).

Yme{0,...,M — 1},

Then, under orthogonality conditions, we can write ;

r) = > 3 rim(k)im(t)

me{l,....M—1} jEZ kEZ

where

7j.m (k) = (T, Vjm k)
and(-, -) denotes the standard inner producLéfR). The latter expansion is called an
M-band wavelet decomposition of onto the orthonormal wavelet basis
{jmpr, (k) € Z*,m € {1,...,M — 1}}. For more insight on the continuous-
time wavelet decomposition, we refer to [MAL 08, FLA 98].

2.3.4. 2D extension

For simplicity, we only consider separable two-dimensiomavelet transforms
which constitute a direct extension of the 1D case. The imagegocessed in two
steps : the filter bank is applied successively to the imags snd columns. Conse-
quently, the obtained 2D wavelets are equal to the tensaluptof the 1D wavelets
and define a.2(IR?) basis. Applying such a transform to multicomponent images ¢
sists of applying the 2D transform on each channeiving rise to the following
coefficients :vb € {1,...,B},Vm = (my,ms) € {0,..,.M — 1}2,Vj € Z and
Vk = (kl,kg) S Zz,

b
r.gl)n(k) = <<T(b)7 ¢j,m17k1 ¢j,m27k2>>

where((-,-)) denotes the standard inner productid{R?). The separable property
of the transform allows us to obtain a directional analysigyages, separating the
horizontal, vertical and “diagonal” directions.
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2.3.5. Other related representations

Nevertheless, wavelets suffer from some drawbacks : thedirs is a lack of
shift invariance whose potential shift-variant edge acti§ are not desirable in ap-
plications like denoising. Another drawback of decomposg onto wavelet bases
is that they provide a relatively rough directional anadysiools that improve the
representation of geometric information like textures addes, and preserve them
during processing are thus required. Consequently, diinedast decade, many au-
thors proposed more sophisticated representation tolésideames having exact or
approximate shift-invariance properties and/or bettkintainto account geometri-
cal image features. One such frames is simply obtained kypilig the decimation
step in the previous filter bank structures, so leading tormlecimated wavelet trans-
form [COI 95, PES 96] which has a redundancy equal to the nuniloé considered
resolution levels. Note that such overcomplete waveletesgntations can be built
by considering the union af/” shifted wavelet bases. In this case, cycle spinning
denoising techniques may be used which consist of estigdtia signal in each
basis and averaging the resultidg”’ estimates. In order to reduce the computa-
tional cost of these decompositions or to better capturengédcal features, other
frame representations have been designed. These dectiomogirovide a local,
multiscale, directional analysis of images and they oftaweha limited redundancy
[COI 92, CAN 06, DO 05, MAL 09, CHA 06].

2.3.6. Related model

An M-band orthonormal discrete wavelet decomposition ovegsolution levels
is performed to the observation fiet?) for each channdl. This decomposition pro-
ducesM? — 1 wavelet subband sequenoéﬁn, m € {0,...,M —1}?\{(0,0)}, each
of sizeL; x L;, at every resolution levgl and an additional approximation sequence
r% of size L; x L, at the coarsest resolution leveto simplify our presentation,
we consider square images).

On the one hand, the linearity of the Discrete Wavelet Tiansf(DWT) yields
(see. Fig. 2.6) :
vk € Kj, I‘jym(k) = Sj’m(k) + Iljym(k) (23)

whereK; = {0,...,L; — 1}* and
A B
sjm(K) = [s{0 (K), ..., s (1],

75 »2j,m

0. (k) 2 [0 (k), ..., 02 ()],

J,m ’77,m

rim(®) 2 [ (), )T

J,m ’7g,m
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On the other hand, the orthonormality of the DWT preservesiagial whiteness of
n; . More specifically, it is easily shown that the latter fielcaisi.i.d. A/(0, T(™))
random vector process.

A final required assumption is that the random vecters, (k))rex are identically
distributed for any given value dfi, m).

K o0

v v
WT WT
st D t )
n®
iid A7(0, 02)
WT
"

Figure 2.6. Considered model in the wavelet transform domain.

2.4. A survey of themost relevant univariate and multivariate denoising methods

Our objective is to build an estimater of the multichannel image from the
degraded observatian The estimating function is denoted Ifyand, we have thus

s= f(r). Inthe present case, as shown in Section 2.2.2, we haveltoide&aussian
noise removal. This is a multivariate estimation problentsithe original multichan-
nelimage is composed & ¢ N* components(®) of sizeL x L, withb € {1, ..., B}.
Different denoising techniques are presented below. Wflrilescribe Fourier do-
main methods and then we focus our attention on waveletdbasthods. But first
and foremost, we present the general context we adopt fthelinethods operating
in the wavelet domain.

2.4.1. Context in the wavelet domain

In the wavelet domain, by using the notations defined in 8B@i3, the degra-
dation model (2.2) becomes (2.3). Actually, we considerrtige flexible situation
where an observation Sequer(ié?il(k))keﬂgj of d-dimensional real-valued vectors
withb € {1,..., B} andd > 1, is given by

VkeK;, (k) =5 (k) +n (k)

Jj,m — Yjm 0im
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and( (k))keK is a zero-mean spatially white Gaussian noise with covaeian

matrix 1“( , which is assumed to be invertible. The three above vectdtdes
taken of the form :

0] ®) ®)
0 a0 = @ o o S B) 2o) g [
rjym(k> - [f‘;;(k)] ’ ]m<k) - [ (b) k)] ’ j»m(k) [ ;bzn(k)‘|

wheref") (k), 51"} (k) andi"), (k) are random vectors of dimensian- 1. These

vectors may for example correspond to neighboring vargabfehe associated scalar
variables,r (&) (k) s (k (k) andn(b) (k). In this context, our objective is to estimate

J,m
y?n(k) smg the observation sequer(aé (k))xex, - The vectonr( ) .. (k) is called

theReference Observation Vect@OV) from which the following est|mate is built :

51

VkeK;, &m(k) = £ D).

J,m

Explicit choices of the ROV sequen¢éj7m(k))keKj are detailed in the next para-
graphs.

2.4.2. Popular componentwise methods

A first strategy for denoising a multichannel image is to perf a componentwise
processing without taking into account any statisticaleshelence existing between
the channels.
2.4.2.1. Frequency domain

A very popular method operating in the frequency domain & \tfiener filter

C . . ()
[WIE 49]. This filter is designed so as to minimize the mean (-:«{]eaﬂrorE[\Jsk (k) —

s (k)|?], for everyb € {1,..., B}, under the assumption that") is a wide-sense
stationary random field. The frequency response of this fiteds
S (v)

Yo el0,1)?, HOw)= 2
v [ ) (V) S (l/) + crg

whereS, ) denotes the power spectrum density 6t ando, is the standard deviation

of the noise in channél One of the main drawbacks of this method is that it requires
the a priori knowledge of the power spectrum density or anigcapestimation of it.
Note that a multicomponent version of the Wiener filter haenbaerived in [ANG 91]

by using the multi-input multi-output 2D filter minimizin§[||§(k) —s(k)||?],L so
taking into account the spectrum density matrix of

1. ||.|| denotes the classical Euclidean nornidt .
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However, it may appear more useful to solve the problem imteelet transform
domain [ATK 03], where we can take advantage of a space-&rgurepresentation
of the images. Indeed, noise coefficients are usually Higed over small wavelet
coefficients, whereas signal coefficients are concenti@igdiigh magnitude ones. In
addition, in [DON 94], Donoho and Jonhstone showed that l iotple and efficient
approach for noise removal is available, through waveletstmolding.

2.4.2.2. Visushrink

Visushrink [DON 93] is a componentwise method, which medra the ROV
reduces to a scalar : ,
m (K)-

(
T Jm

Two kinds of thresholdings are usually employed :
— hard thresholding :

vkeK;, [ (r

(b)
]7m( J

,1m

0 otherwise.

(k) — { A0 it [l ()] > x )

— soft thresholding :
vkeK;, [0 (r8) (k) = sign(r’), (k) max{|r{", (k)] — x*, 0}

T(b) k)| — (b)
iy | ((b”( )|X ) (k) (2.4)

wheresign(+) is the signum function.

These two shrinkage rules are illustrated in Fig. 2.7. Thblem here is to find the
best threshold valug® > 0. In [DON 93], the authors have derived the so-called uni-
versal thresholg (") = 207, /log(L) which relies on the fact that the maximum values
of any set ofZ? independent random variables identically distributedVd8, o7) are
smaller than the proposed threshg!@ with a high probability [MAL 08, p. 556].

2.4.3. Extension to block-based method

In order to take into account correlations between waveleffcients, some au-
thors have proposed to apply a block shrinkage. More prigciad CAl 01], it is pro-
posed to exploit the spatial dependences, which correspionithe following choice
of the ROV :

—(b b b b
Fh () = [ (), 70 (ke = K)oy (k= Keg)]

7]m 7]m

wherek, ..., k1 allow us to define the neighborhood of interest for the pkkel
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,34/

-4 L L L L L I I |
-4 -3 -2 -1 0 1 2 3 4

Figure 2.7. Hard (continuous line) and soft (dashed line) thresholdings.

The associated shrinkage rule named “NeighBlock” is given b
=(b) 2 _ o2
(b) r (k)| —xd
1 g (IEmGOP =xdt) ) (o
Js _(b) NE J,m
5 (K| .

wherey > 0 andd is the number of components in the ROV.

In [SEN 02], interscale dependencies have been exployatehining the follow-
ing ROV :

(b b b k b k
Fn(6) = [ 0,750 (7 Do (T DI

The associated estimator called “bivariate shrinkageéfmed by :

=0 a1 V3%
" 12,00 -
A _ T4 ®) (1
5j,m —(b Tj7m( )
175 (K

+
whereo, ) > 0. It can be derived by a Maximum A Posteriori (MAP) rule by ciolRs
ering as a prior model for the wavelet coefficients the nongSen bivariate proba-
bility density function

P00, 52, (151 s esp (= 22 4000 + s m KD ).

T 5(b)

Note that interscale dependencies are also taken into acao{SCH 04] where a
multivalued image wavelet thresholding is performed. ©tinarks developed Bayesian
estimation procedures imposing a prior on the noise-frée da
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2.4.4. Bayesian multichannel approaches

As previously mentioned, Bayesian approaches requir@agbta statistical mod-
eling.

2.4.4.1. Bernoulli-Gaussian priors

A Bernoulli-Gaussian (BG) prior is an appropriate modeldfeact the sparsity of
the wavelet representation of natural images [ABR 98, LEP\@&h this statistical
model, some authors derived Bayesian estimates [BEN 03, &M

Let us first present the method proposed in [BEN 03, ELM 05kdch subband
of index(j, m), the probability distributiom; ,,, of the coefficientgs; m (k))kek can
be written as follows :

Va e R”, pjm(u) = (1-€m)d(u) + € m 9o,r¢x), (W)

5)

,1M

whereg, ..-) denotes theV (0, F§. ) multivariate normal probability density func-

tion. The mixture parameter ,,, corresponds to the probability that a coefficient vec-
tors; m (k) contains useful information. In order to avoid degenerdédP estimates,
itis used to couple the multivariate prior model with hiddandom variableg; m, (k).

The sequencgy; m(k))kek, is an i.i.d. binary sequence of random variables defining
the following conditional densities : for evekye K,

P(sjm(K) | gjm(k) = 0) = 6(sj,m(k)),

P(sjm(k) | gm(k) =1) = g5 o) (85,m(k))
with P(¢jm(k) = 1) = ¢;m € [0,1]. In practice, the hyperparametd?ff,)n and
€;,m related to the BG priors can be estimated by a moment methaal Bxpectation

Maximization (EM) technique. As the noise is Gaussian, tlding conditional
probability densities are easily derived : for evéryg K,

p(rjim(k) [ gmk) =0) = gorm(rjmk))
PrjmK) [ Gm(k) =1) = gy pe pe (Fm(k).

Thus, a two-step estimation procedure can be used for neigeval :
1) For everyk € K, the estimateA]jym(k) of ¢jm(k) issetto 1if:
P(gjm(k) = 0] rjm(k)) <P(gjm(k) =1[r;jm(k)),
otherwisejq\jﬁm(k) is setto 0. This implies that :

. T~ 4
6j,m(k) = { 1 if rjm(k) Mjmrjm(k) > Xjm,

0 otherwise
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whereM,; ,, is the semi-definite positive matrix :

M, m = (D) — (D) 4 Tm)—1,

J

and the thresholg; ., is defined by

(s) (n)
I —€jm | Fj,m +T |
Xj,m - 2111 (%) + h’l <|I‘(n)|

where| A | denotes the determinant of matix
2) On the one hand, ﬁj’m(k) = 0, it is expected that the related observation is
dominated by the noise, according to the definition of thelirdvariables. Hence, itis
natural to seﬁjym(k) = 0. On the other hand, ﬁj,m(k) = 1, the Bayesian estimate
of s; m Minimizing a quadratic cost is computed. It correspondshé posteriori
conditional mean. The posterior distribution is Gaussisutha bivariate distribution
of (rjm(k),s;m(k)) is Gaussian wheg; n, (k) = 1. Itis easy to check that :
Vk € Kj,  Elsjm(k) | rjm(k), ¢jm(k) = 1] = QjmTjm(k)
where .
Q) =T, (D), + 1)L,
It appears that the estimator amounts to a shrinkage rulg#réorms a tradeoff be-

tween a linear estimation in the sense of a minimum mean sqgraor and a hard
thresholding.

An alternate approach to this two-step estimation proeeduthe use of the a
posteriori conditional mean which, for evekye K;, can be expressed as

Elsjm (k) | rjm(K)] = E[sjm(K) | rjm(K), ¢jm(k) = 1JP(gjm(k) = 1| rjm(k))
sincep(sjm(k) | rjm(k),¢jm(k) = 0) = 0(s;m(k)). Besides, we can write :
P(rjm(K) | gjm (k) = 1)P(gjm(k) =1)
p(rj,m(k))
€m01 (r;.m(k))
¢j,m01 (rm(k)) + (1 = €j,m)00 (rj.m(K))
Vejm (Tj.m(K))

Vk € Kj, P(gjm(k) =1|1;jm(k)) =

1>

with the following definitions :

yAN AN
0o=gorwm, 01=95re \rm-

The optimal mean-square Bayesian estimate can be easilgeiéd
A
Yk € K, Sj’m(k) = Vej,m(rj,m(k>)Qj,mrj,m<k)- (25)

Note that in [ELM 05], interscale dependencies are takem agtount in addition to
cross-channel ones.
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2.4.4.2. Laplacian mixture model

A Bayesian componentwise approach was proposed bkyriea and Philips
[P1Z 06]. They have described a simple way for applying it to atimomponent im-
age, when the noise is componentwise decorreldréty (= I‘ﬁ“) = o2 Ip). For
each component at each resolution level and in each oriesuleldand, the princi-
ple is to consider a mixture of two truncated Generalizedssiam (GG) (also called
generalized Laplacian) distributions where a Bernoullid@m variable controls the
switching between the central part of the distribution aadadils. More precisely, for
each componerit, the authors have considered as a prior the GG distribution :

(b)
(A(-bﬁn)l/ﬂ“‘ (®
VueR, pih(u) = 2B exp(— AL [ul i)
whereT'(z) = [" t*~letdt is the Gamma funct|0n>,\§ . > 0is the scale pa-

rameter andB’J(»)t)rl > 0 is the shape parameter. It is worth pointing out that therprio
hyperparameters can be easily estimated from the fourthentsnof the noisy co-
efﬂmentSr %) - [SIM 96]. Then, they have defined a signal of interest as aenfrese
coefficient WhICh exceeds a given threshﬁﬂjﬂ;)1 To estimate the signal of interest
from the noisy observations, they have introduced a seguehBernoulli variables
(®) (k) associated with the two hypothesks “the noise-free signal is not of inter-

45 m
est” andH; “the noise-free signal is of interest” :

Ho: s (k)| < T and  Hy:[sh (k)| > T

In other words, ifq](.f’) (k) = 1, the coefficientsgf’,)n(k) is of interest. Therefore, it is
possible to compute (qJ( b (k) = 1):

P(q") (k) = 1) = 1 - Tinc (A (1)) Pm 1/

whererl';,. is the incomplete Gamma function. Hence, the following d¢tiodal prob-
abilities can be easily derived :

(b) .
(s (10)1g () = 0) = 4 Coexp(=ATnlsyma(0)|m) it [0, (k)| < T,
%5 m 1 m 0 otherwise

(b)

(k)|q',

0 if s (k)| < 7Y
(s, =1 = { s\, () < T,

Crexp (=AY s (x )|ﬁ§f’,’n) otherwise

whereC, andC, are normalizing constants. For multivalued images, theastpro-
posed to exploit a local information from the different chels by defining the band
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activity indicatorz; ,,, as the average over thg channels of the magnitudes of the
homologous noisy coefficients :

Consequently, the local minimum mean square estimator is

b b
Els\") (k)| "),

J,m

(K), 2j,m (k)]
= P(g{0 () = 17"}, (), 27.m (k) )E[5 0y (), () 0% (k) = 1]
+ P (g (k) = 01 (K), 25.m (k) E[s 0 (k)| (), 47 (k) = 0]

by assuming that the coefficier(tsgf’r/r)l(k))lgb,SB are independent conditionally to

Ho or H;. The sparseness of the wavelet representation allows whtider that the

second term takes very low values and to approxirat) (k)|r<") (k), ¢\’), (k) =

1] by r(b) (k). Then, the following estimate (called ProbShrink) is dedior each
subbanc{j, m) and channeb :

5 () = P(q (k) = 1L (), 25.m ()72 (1.

After some manipulations, the explicit expression of thetd&hrink estimate is :

(®) n(rin ) (rn () )
Sim(k) = : : 7jm(K
sank) 1+ n(r{h (k)€ (r, (k) "
where ®) ®)
) 1)) — P(7om (K)|qj o (k) = 1)
1(75m(1)) p(r (6)[q"), (k) = 0)
(b)
r(,b k _ p<Z_1,m(k)|q,m(k) = 1)
£ m(k) p(zﬁm(k)lq](-fﬂq(k) =0)

In practice it is used to sdf(b) =0 and the computation of the conditional den-
smeSp( ) (k |qJ (k) = ) andp( ) (k )|q (k) = 0) can be deduced from

p(s; O (k )| q(b) (k) = 1) andp( ) (k )|qj(br)n( ) = 0). Indeed, we have ¢ ¢
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{0,1},
p(r, ()1, () = 0)

b b b b b
- / 00,02 (1 (6) — 5120, ())p (520, (0)]g! 1, () = £)ds, (k),

whereg, .2 denotes the\/(0, 02) probability density. For the statistical characteriza-

tion of the band activity indicatot; 1, it is assumed that the Coefﬁcieméf’;r)l(k))lgb,SB
are all distributed according to eith&t, or ;. Therefore, the conditional density

of z; m(k) given q](.f’l)m(k) is the B times convolution of the conditional densities of

1) (k)| giveng'”) (k).

2.4.4.3. Gaussian scale mixture model

Inspired by the work for monochannel images [POR 03], Sctletsnand de Backer
[SCH 07] have assumed that the unknown signal veitgr can be expressed as fol-

lows :
sjm(k) = 1/2jm(k)ujm(k)

whereu; ,, (k) is a zero-mean normal vectdf (0, T'"s=)) andz; ., (k) is a positive
scalar random variable independentigf, (k). The prior probability density function
of s; m(k) can be considered as a Gaussian Scale Mixture (GSM) as we have

P(sj,m(k)) = / P(85.m(K)[2j,m (K))p(2j,m(k))d2;j m (k).
0
Indeed, p(z;m(k)) corresponds to a mixing density arg m(k)|zjm(k) ~

N(0, zj m (k)T ™)), The posterior mean estimaiés; m (k)|r; m (k)] can then be
expressed as :

Elsjm(k)[rjm(k)] =
/OOO P(25,m (k) [1j,m (k))E[8jm (k)1 m(k), 2j,m(k)]dzjm (k).

On the one hand, we note that the involved conditional pmsterean in the right
hand side of the previous equation corresponds to the Westenate :

ElSym (01000 (k). 27 ()] = 27 ()T M) (2, ()T ) 4 TOV) ) ().
On the other hand, Bayes rule allows us to expggssm (k)|r; m(k)) as :

P(2,m (K) [15,m (K)) o< p(r),m (K)[2),m (k))P(2),m (k).
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In practice, in order to calculate this conditional proliihispecifying the distribution
of z; m(k) is required. In the case of monochannel images, Posilial. [POR 03]
have proposed the (improper) Jeffrey’s prior :

P(zjm(k)) < 1/2jm(k).

In [SCH 07], another alternative has been considered whergiesomponent noise-
free imagey is available, which is employed as an ancillary variablis éssumed that
the joint distribution of(s; m (k), y;,m(k)) is a GSM. Consequently, it is found that the
probability ofs; m (k) conditioned ory; m (k) is a GSM. Then, by adopting the same
strategy as previously (development of the conditionatgra®i means and applica-
tion of Bayes rule), it has been shown that the Bayesian at#im
E[sjm(k)[r;m(k),y;m(k)] can be explicitly calculated.

2.4.5. Variational approaches

In wavelet-based variational approaches, the waveletic'cmfts(é jm)j,m Of the
denoised multichannel ima@are obtained by minimizing the objective function :

(Wm)iam = 5 0 ()~ £(19) Q! (k) ~ £() + A((Wjm)m) (26)

keK

whereu designates a generic multispectral image witicshannels of sizé, x L and
(u;m);m IS its wavelet representatio is a definite positive matrix of siz8 x B
andh is some appropriate function. The first quadratic term r&gmes a data fidelity
measure with respect to the observation model. The funétiossually corresponds to
a penalty term (also called regularization term) used torjparate prior information
about the original image. In the particular case whe@ = I'™ andexp(—h(-)) is
(up to a multiplicative constant) a probability density €tion, this approach amounts
to a MAP approach wherg is the potential associated with the prior distribution
adopted for the wavelet coefficientssof

Some classical choices farare :

—h = 1ic where iz is the indicator function of a closed convex sét
(ic ((Wjm)jm) = 0if (Ujm);m € C and+oo otherwise). This function imposes a
hard constraint on the solution (e.g. the positivity of itegbvalues).

~ 1 ((Wjm)jm) = A1 Seex [IVa® (k) [|3 whereVu® is a discrete version
of the gradient ofu®, || - || is the Euclidean norm dk? and .\ is a positive factor.
This corresponds to a Tikhonov regularization [TIK 63], afiserves to ensure the
smoothness of the denoised image.

~h((Wim)jm) = A1) Skex || Vu® (k)||2 which can be viewed as a discrete
version of a Total Variation (TV) penalization [RUD 92, TEB]9A multivariate ver-
sion of this function was also proposed in [BLO 98] (see a#¢d]J 06] for extensions).
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= h((ugm)im) = S0 X G A Dcers, [ (k)| where the expo-
nentsﬁ(b) and the scaling parametek§ are positive. This function is the poten-
tial of an independent Generalized Gaussian distributboritfe wavelet coefficients
[CHA 00, ANT 02]. Under some assumptions, it can also be preged as a regularity
measure in terms of a Besov norm [CHA 98, LEP 01]. A particakse of interest is
when the exponents are all equal to 1. The resultingorm is used to promote the
sparsity of the wavelet representation of the solution, dfyireg many of its coeffi-
cients to zero [TRO 06].

Note that a composite form consisting of a sum of several ®fathove functions
can also be considered. Each of these penalizations magdmtesent its own advan-
tages and drawbacks. For example, the Tikhonov regulaizétnds to oversmooth
image edges whereas the TV penalization may introduce hasaiecase effects.
Another point to be emphasized is that the solution to theémzzation of (2.6) can
be obtained in different manners, according to the choide 8bmetimes, an explicit

expression ofs j.m can be derived. This arises, in particular, for Tikhonovutag

ization or, whenQ is a diagonal matrix and a GG potential is used 7) €
{1,4/3,3/2,2,3,4} [CHA 07]. In other cases, iterative algorithms must be agptd

computéjm. When a hard constraint is imposed, the constrainf'sgften is decom-
posed as the intersection of elementary closed convex sétisesative techniques of
projection onto each of these sets can be applied [COM 96, OOMCOM 04]. One
of such approaches is the well-known Projections Onto Coi8ats (POCS) algo-
rithm. Provided that: is a convex function, other iterative convex optimizatidgoa
rithms can be employed to bring efficient numerical soluitmthe considered large-
size variational problems (see [CHA 07, COM 07, COM 08] arfdnences therein).
These optimization methods are also useful when a reduffidemé representation of
the data is used instead of an orthonormal one.

2.4.6. Stein-based approaches

As already mentioned, the main problem in wavelet coeffidieresholding is the
determination of the threshold value. Furthermore, inticacit often appears prefer-
able not to require some prior knowledge about the origiagh dA solution to allevi-
ate such problems is to invoke Stein’s principle [STE 81]ahhtan be formulated as
follows :
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Proposition 1 Using the notations of Section 2.4.1, }fé{ﬁ‘ : R? — R be a contin-
uous, almost everywhere differentiable function suchthat

V0 € R,

) (t—0)T @)t -0)y _

[[t]l =00 T m(®) exp ( B 2 ) =0
_ Of o (70, (k)
Ell £ (7)) < +00 - and E[“Ww < f00
Then
ELf S (F 0 (K)o (K)] = ELF S (F0 (), ()]
9 ©)
- farfw( § D) e, 00000 @)

2.4.6.1. Expression of the quadratic risk using Stein’s formula

A standard criterion in signal/image processing is the magumare error (also
called quadratic risk) defined as

Elll8),m (k) — 8;.m(k)|%]

Ells\"h (k) — £ 00 ()]

;1M

M= I

(Ells! )] + ENLA o (5 (D) 2] = 2L (7410, )0, ()]

)

S
Il
—

(b) =(b)
= E[rjm(k) = 85m()[*] + 22 E[W]TEW
b=1 j,m

The last equality has been obtained by using Stein’s forifsala (2.7)). The advantage
of the latter expression is that it only depends on the oleskdata and no longer on
the unknown original data. This means that no prior infofarats necessary to build
an estimate minimizing the quadratic risk. Another remarke formulated is that the
minimization of the risk will be performed by optimizing arlited number of variables
parameterizing the estlmatgff (e.g. a threshold value). Due to the assumption of
stationarity made at the end of Section 2.3, it can be notibatithe above risk is
independent ok, so that it will denoted?; ,, in the next paragraphs.
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2.4.6.2. Existing methods based on Stein’s principle

We will now present a variety of Stein-based estimators @tkh hereafter by
the SURE prefix for Stein’s Unbiased Risk Estimate) rangiognf componentwise
thresholding rules to more sophisticated block-based oaisth

— SUREshrink [DON 95] is a very popular componentwise methbthus op-
erates separately on each chanhelt consists of a soft-thresholding as given by

(2.4), where subband-dependent threshold vam% are computed in order to min-
imize the contnbutlonR(b) of the b-th channel to the quadratric risk; ,,. More
exactly, the classical sample estlmeﬁéb of R<bm is employed. Then, the vari-
ables| gbzn( )| are sorted in descending order, so dlréﬁfn(kl = |r (%) m(k2)| > ...

> |r(b) (kL2)| It can then be shown that if, fag € {2,..., L3}, r; (b) s (kig—1)| >
ng,)n |r(b) (ki, )], the risk estimatd?‘g?fn is a second-order b|n0m|al increasing
function ofx(b) over the considered interval. It can be deduced that thenapti
threshold value over the mterv{ik(b (kiy)l, |r§f’1)m(kio,1)|) is |r§.f’3n(ki0)|. So, the
optimal threshold value ovét |s found by evaluatingi’gf’,)n on the finite set of can-
didate valueg|r{") (ki)|, .., [r}"} (kz2)], 0}

— Starting from the Baye5|an estimate given by (2.5), théamstin [BEN 05]
derived a multivariate shrinkage estimator called SUREVERIore precisely, the
parameters; ,,, andQ; ., are directly adjusted so as to minimig,,,. For simplicity,
the matan‘(S) involved in the expression of thfg function has not been included in
the set of parameters estimated with a SURE procedure. Aroxippate value (like
that obtained by a moment method) can be employed. It candvegithat

Rjm =tr((Qjm — Ajm)Cim(Qjm — Ajm)" — A;mCjmA] )
with
Ajm =Bjm(Cjm) "
Bim = E[em (0m (k)T () (£5m () T] = T (E[e; mn (vm (k)] 15
FE[V e, (0 () (rm () T])
Cim ZERZ . (0jm(K)r)m (k) () m (k)]

where it has been assumed tl@j ,, is invertible. It is easily shown that setting
Qjm = A allows us to minimizeRk; ., and that the optimal valug; ,, within
[0,1] should maximizetr(Bij;}nBjT,m). It appears that this amounts to a mere
optimization of a one-variable function which can be perfed with conventional
numerical optimization tools.
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— More recently, we proposed an approach to take into acepaital and cross-
channel dependences by using Stein’s principle [CHA 08]reMarecisely, the pro-
posed estimator takes the form :

)\(b) b) (b (b a(b) b
$5m (1) = £ (Fn () =m0 (IE () [m) (pf0) T (k)
Wherenx@) (+) is the thresholding function given by

(b)
T—X m
ek g ()= (L)

J,m T

andx(b) >0, a( ) =0 andp € R%. The vectorp( ) corresponds to a linear
parameter This estlmator generallzes the block- basafdaier proposed in [CAI 01,
SEN 02] as well as linear estimators. The parameters ar@utaa similarly to the
SUREShrink approach (more details can be found in [CHA G8though the choice
of the ROV is quite flexible, examples of some ROVs correspuntb spatial and
across channel neigborhoods were considered in [CHA 08].

— Another efficient approach is SURE-LET (the SURE-Lineampé&hsion of
Threshold [LUI 08]). Then, the considered expression ofesigmator is

(b) 8
b b b b b (r',m(k)) b
(o (10) = a1, (00) + a? <1exp((] ) ) i)
Wim

s

)L (02 gre real-valued weighting factors. In the case

m’ J,m

wherewj(b) > 0 anda

when(a (0).1 7, (1), 2y = (1 0) a Iinear estimator is obtained, whereas in the case when

J m ’7j,m
(ag.?z;ll,agf’fn ) =1(0,1) andw o > 1, a thresholding-like rule is obtained. Note that
other possible choices of the nonlinear part of the estimawe been proposed in
[PES 97, RAP 08]. This estimator possesses a number oftatedeatures :

- the determination of the optimal valuesaéf’ anda; b)’ minimizing Rﬁbr)n
reduces to solving a set of linear equations. '

- The use of a linear combination of more than two terms in tht@rator
expression can be addressed in a similar manner.

- The approach can be extended to the multichannel case [B)Jirterscale
dependencies are also taken into account).

- When employing non-orthonormal representations (e.gqurrédnt frames),
there is no equivalence between the minimizatiorRgf,, for each subband and the
minimization of the mean square error in the space domaimeter, for a SURE-
LET estimator, it turns out that the minimization of the dattriterion can be easily
carried out, so ensuring an optimal use of the flexibilityeo#d by non-orthonormal
representations.
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2.5. Method comparisons

In this section, we will give some insights about the appaipness of a noise
removal method for a given application. Indeed, the prevgurvey has indicated that
specifying a denoising method involves several choicek asc

— componentwise processing or joint processing,
— Bayesian strategy or non Bayesian approach,
— choice of the representation,

— computational complexity.

In what follows, we will briefly discuss these issues, somespnted methods being
illustrated in Fig. 2.8.

2.5.1. Componentwise processing versus joint processing

A great number of efficient denoising methods have beendjfrdaveloped for
monochannel images. Hence, the temptation is strong tothjirgpply them to each
component of a given noisy multichannel image. Howevemifeations exist across
the components, itis judicious to exploit them. A basic rodtis a two-step procedure
which firstly removes such correlations through a principainponent analysis or
an independent component analysis and, then applies a aai@vdenoising for
each transformed component [GRE 88]. However, in gen¢tesibeen observed that
jointly denoising the components outperforms the basicdtep method [BEN 05,
LUI 08].

2.5.2. Bayesian strategy versus non Bayesian approach

Wavelet transforms are known to generate very compactseptations of regular
signals. This is an appealing property which simplifies tiadistical prior modelling
required in the Bayesian framework. In this respect, fohlmamponentwise and joint
processing, it is important to note that the wavelet coeffits have been modelled in
different ways :

— marginal probabilistic models for the subband coeffigent
— joint probabilistic models accounting for interscale elegencies between the

subband coefficients [SEN 02], [ROM 01, ELM 05] or for sphtigrascale depen-
dencies [MAL 97], [CHA 08].

The more accurate the prior distribution, the better théoperance. Concerning mul-
tivariate estimators, it has been found that Bernoulli-€s&an and Gaussian Scale
Mixtures priors behave similarly in terms of signal-to-s®ratios for natural images,
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and they are clearly better than Gaussian priors [DEB 08].

It is worth pointing out that the Bayesian approach presemtsmain drawbacks.
Firstly, there may exist a mismatch between the data and duehand, the structure
of the estimator may thus be inappropriate. Secondly, theeseof the hyperparam-
eters may be suboptimal as they are derived from statistitelence exploiting the
prior model. These shortcomings have made attractive ngedan methods. In the
case of Stein-based approaches however, the choice oftthmats form is a key is-

sue. In[BEN 05], it has been shown that SUREVECT outperfdhrasested Bayesian
denoising methods. Combination of nonlinear functionsTL&so allows us to define
a flexible class of estimators.

2.5.3. Choice of the representation

Very often, the performance of a denoising method (for amgineise level) is
measured in terms of the averalgSE;,, of the mean square erroMSEi(frf in each

channeb :

B
1 ®) i ® 1 ) A®) o
MSEim = — bZ:;MSEim with MSE;” = Iz > sk -5 (k)%

kecK

When the noise is removed in the WT domain, the average mearesguarMSE;,
of the B mean square erroMSEEf) in the transform domain is very often employed :

B
MSE = — > MSER with MSE() = — 3~ >~ [s{7),(k) = 5, ().
b=1 (j,m) keK;

Notice however that only some of the reported methods edglintroduce the mean
square error criterion in the optimization process for #lated estimator.

On the one hand, it must be pointed out that the minimizatfdheomean square error
between the wavelet coefficients is equivalent to the mirdtndn of the mean square
error in the image domain if and only if the wavelet repreatoh is orthonormal.
Consequently, when the image is decomposed on a redundarg,fthe minimization
of MSE, is suboptimal. On the other hand, it has been noticed by matinpes that
better results are often obtained with redundant decortiposi One of the main rea-
sons for this fact is that these transforms have betterlaois invariance properties,
which is beneficial to the reduction of Gibbs-like visualfaits. Especially, curvelet
[CAN 99] and dual-tree wavelet decompositions [SEL 05, CHAltave provided re-
cent examples of multiscale transforms giving rise to refdum representations which
are especially good for denoising purposes.

The suboptimality of the denoising on a redundant reprasienthas been alleviated
for LET estimators since it has been proved that it is posgibdirectly minimize an
unbiased estimate &fiSE;,,, [LUI 08].
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2.5.4. Computational complexity

As noticed in [DEB 08], it is clear that the computationaldaa increased by a
joint processing rather than separate ones. Besides, isBayapproaches, the hyper-
parameter estimation may imply a high computational cossfite their versatility,
variational methods requiring iterative solutions ar@aise-consuming.

Altough they yield improved results, redundant repreg@nta involve a signifi-
cant increase of the computational complexity when thendducy factor is high.

2.6. Conclusions and per spectives

We have given a broad overview of multivariate image dengisnethods, with
a special emphasis on wavelet-based approaches, sincketsafficiently represent
image features (both textures and edges). Under differ@isercorrelation models,
a variety of transform domain estimators have been destrila@ging from Wiener
to Stein-based via Bayesian or variational approaches.eéMhdst of these methods
have been presented for orthonormal wavelet bases, sorherofdan be applied to
more general frames. We would also like to mention that weatdave provided an
exhaustive list of the available denoising methods. Formgte, the reader is referred
to [BUA 05] for a description of other non-wavelet based dsimg approaches.

Other degradations such as blurring may also affect maltiobl images, essen-
tially due to the optical sensor. Recent works now aim at ld@ieg advanced wavelet-
based methods for restoring multichannel images degragladohurand an additive
noise.
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(b) SNR= 4.07 dB

(c) SNR= 8.33 dB (d) SNR= 8.59 dB

(e) SNR= 8.66 dB (f) SNR= 8.87 dB

Figure 2.8. Denoising results on the first component of a Landssatellite
image (see Fig. 2.2). (a) Degraded image and restored images usingiéner
filter, (c) BLS-GSM [POR 03], (d) Probshrink [éIOG], (e) SUREVECT

[BEN 05] and (f) Block-based wavelet estimate [CHA 08]
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