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Chapitre 2

Wavelet transform for the denoising of
multivariate images

2.1. Introduction

An increasing attention is being paid to multispectral images for a great number
of applications (medicine, agriculture, archeology, forestry, coastal management, re-
mote sensing . . . ) because many features of the underlying scene have unique spectral
characteristics that become apparent in imagery when viewing combinations of its
different components. Hence, in satellite imaging, a better analysis of the nature of
the materials covering the surface of the earth is achieved [LAN 00]. Typically, multi-
spectral imaging systems employ radiometers as acquisition instruments which oper-
ate in different spectral channels. Each one delivers a digital image in a small range
of the visible or non visible wavelengths. As a result, the spectral components form a
multicomponent image corresponding to a single sensed area. Usually, satellites have
three to a dozen of radiometers. Multispectral sensors offer a valuable advantage over
color aerial photographs, thanks to their ability to recordreflected light in the near in-
frared domain. Near infrared is the most sensitive spectraldomain used to map vegeta-
tion canopy properties [GUY 90]. There are several familiesof on-board multispectral
radiometers in the different satellite systems. The first example is SPOT 3 which has
two High Resolution Visible imaging systems (HRV1 and HRV2). Each HRV is des-
ignated to operate in two sensing modes : a 10 m resolution “Panchromatic” (P) mode
over the range [0.5, 0.73]µm and a 20 m resolution multispectral mode. For the multi-
spectral mode, the first channel is associated with the range[0.5, 0.59]µm, the second
channel with the range [0.61, 0.78]µm and the third one with the range [0.79, 0.89]

Chapitre rédigé par C. CHAUX , A. BENAZZA-BENYAHIA , J.-C. PESQUET, L. DUVAL .
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µm. The SPOT family provides a service continuity with the upgraded satellite SPOT
4 (launched on March 1998) and SPOT 5 (launched on May 2002). In addition to the
former 3 channels, SPOT 4 and SPOT 5 imaging systems gather images in a fourth
channel corresponding to a short wave infrared spectral range ([1.58, 1.75]µm). The
fourth channel was introduced in order to allow early observations of plant growth.
Another well-known family of multispectral satellite imaging systems is the set of
Thematic Mapper instruments with the launch of Landsat 1 in 1972. Since April 1999,
Landsat 7 carries the Enhanced Thematic Mapper Plus (ETM+) sensors which are sim-
ilar to the Thematic Mapper sensors with additional features. An ETM+ Landsat scene
is formed by 7 spectral components at a 30 m spatial resolution (except in the thermal
band with a spatial resolution of 60 m) and a panchromatic image with 15 m pixel res-
olution. Recently, commercial satellites like Ikonos and Quickbird have provided very
high resolution images. For instance, Ikonos 4 (resp. Quickbird) collects data with a
level of detail of 4 m (resp. 2.4 or 2.8 m) in 4 spectral ranges (blue, green, red, and
near infrared).
Despite the dramatical technological advances in terms of spatial and spectral resolu-
tions of the radiometers, data still suffer from several degradations. For instance, the
sensor limited aperture, aberrations inherent to optical systems and mechanical vibra-
tions create a blur effect in remote sensing images [JAI 89].In optical remote sensing
imagery, there are also many noise sources. Firstly, the number of photons received
by each sensor during the obturation time may fluctuate around its average implying
a photon noise. A thermal noise may be caused by the electronics of the recording
and the communication channels during the data downlinking. Intermittent satura-
tions of any detector in a radiometer may give rise to an impulsive noise whereas a
structured periodic noise is generally caused by interferences between electronic com-
ponents. Detector striping (resp. banding) are consequences of calibration differences
among individual scanning detectors (resp. from scan-to-scan). Besides, component-
to-component misregistration may occur : corresponding pixels in different compo-
nents are not systematically associated with the same position on the ground.
As a result, it is mandatory to apply deblurring, denoising and geometric corrections
to the degraded observations in order to fully exploit the information they contain. In
this respect, it is used to distinguish between on-board andon-ground processing. In-
deed, on-board procedures should simultaneously fulfill real-time constraints and low
mass memory requirements. The involved acquisition bit-rates are high (especially for
very high resolution missions) and hence, they complicate the software implementa-
tion of enhancement processing. This is the reason why ASIC (Application-Specific
Integrated Circuit) hardware circuits are employed. Such on-board circuits enable very
basic processing since they present a lower performance than ground-based ones. For
instance, Landsat ETM+ raw data are corrected for scan line direction and band align-
ment only. No radiometric or geometric correction is applied. Consequently, most of
the efforts for enhancing the data are performed after theirreception at the terrestrial
stations. In this context, denoising is a delicate task since it aims at attenuating the
noise level while maintaining the significant image features. Generally, the focus is
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put on additive Gaussian noise. In this respect, many works have been carried out con-
cerning single-component images. The pionnering ones werebased on linear spatial
filters and nonlinear ones [JAI 89, PIT 90]. In parallel to these efforts, a gain in per-
formance can be achieved by attenuating the noise in a transform domain in which
the image representation yields a tractable statistical modelling. The seminal work of
Donoho has shown the potentialities of the Wavelet Transform (WT) for reducing a
Gaussian additive noise thanks to its sparsity and decorrelation properties [DON 93].
As a consequence, several wavelet-based image denoising methods were investigated.
The objective of this work is to give an overview of the most relevant on-ground
wavelet-based noise reduction methods devoted to multicomponent images. Two ap-
proaches can be considered. The first one consists of independently applying any
monochannel noise reduction method to each component. Although its principle is
simple, this approach suffers from a serious drawback as it does not account for the
cross-component dependences. This has motivated the development of an alternative
approach in which the noisy components are jointly processed. In broad outline, it is
also possible to classify all the denoising methods (whatever they are componentwise
or multivariate ones) into non Bayesian and Bayesian methods. For the latter category,
a prior distribution model is adopted for the unknown image.
This chapter is organized as follows. Notations and the observation model are pre-
sented in Section 2.2. Section 2.3 is a concise overview on wavelet transforms and
filter banks. Componentwise and multichannel denoising methods are presented in
Section 2.4 : a wide panel of approaches is tackled (wavelet-based, Bayesian estima-
tion, . . . ). Finally, some comparisons are drawn in Section 2.5 before concluding the
chapter with Section 2.6.

2.2. Observation model

This section is devoted to the characterization of multichannel satellite images.

2.2.1. Observed images

The “clean” unknown multicomponent image(s(1)(k), . . . , s(B)(k))k∈K, where
K ⊂ Z

2 is a set of spatial indices, consists ofB images corresponding toB spectral
bands captured byB sensors. The notations(b)(k) thus designates the intensity value
of the pixel at positionk in theb-th image component as represented in Fig. 2.1.

To better figure out the multichannel context, Fig. 2.2 displays6 components of
a Landsat7 image. As can be noticed, image components share common structures,
some details being present in specific spectral bands only. This phenomenon can be
explained by the fact that some sensors are, for example, better able to capture vegeta-
tion whereas others are calibrated for soils. This is one of multispectral image specific
properties that should be taken into account in the design ofprocessing methods.
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s(b)(k) s(B)s(1)

Figure 2.1. In red, a pixel at spatial positionk in theb-th image component.

Unfortunately, the observed images denoted by(r(1)(k))k∈K, . . . , (r(B)(k))k∈K

are subject to various degradations which are detailed in the next section.

2.2.2. Degradation model

The observed images are corrupted by noises coming from different sources
[LAN 86] : atmospheric, sensor detector/preamplifier and quantization. In spite of the
various statistical distributions of these noise sources,the global noise present in ac-
quired data can be realistically modelled by an additive zero-mean spatially white
Gaussian noise [COR 03, ABR 02] thus leading to the followingmodel :

∀b ∈ {1, . . . , B},∀k ∈ K, r(b)(k) = s(b)(k) + n(b)(k). (2.1)

Following a multivariate approach, we define the unknown vector signals, the vector
noisen and the vector observationr, as

∀k ∈ K,





s(k)
△
= [s(1)(k), . . . , s(B)(k)]⊤

n(k)
△
= [n(1)(k), . . . , n(B)(k)]⊤

r(k)
△
= [r(1)(k), . . . , r(B)(k)]⊤

and, consequently, Equation (2.1) can be reexpressed into amore concise form as

∀k ∈ K, r(k) = s(k) + n(k) (2.2)

wheren is an i.i.d. zero-mean Gaussian multivariate noise with covariance matrix
Γ(n) ∈ R

B×B . This matrix can take different forms, three of which will catch our
attention :

1) When the noise is uncorrelated from a component to another with the same
varianceσ2 in each channel, the matrix takes the following form :Γ

(n)
1 = σ2 IB ,

whereIB denotes the identity matrix of sizeB × B.

2) When the noise is uncorrelated with various noise levels inthe spectral bands,
we haveΓ(n)

2 = Diag(σ2
1 , . . . , σ2

B).
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Figure 2.2. 6 components of a Landsat7 satellite image.
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3) Finally, a non-diagonalΓ(n)
3 matrix accounts for cross-channel correlations be-

tween co-located noise samples. One can chooseΓ
(n)
3 = σ2




1 ρ · · · ρ

ρ 1
. .. ρ

...
. . .

. ..
...

ρ · · · ρ 1




,

whereρ ∈ (0, 1] is the correlation factor between two different noise components.

Our objective is thus to perform a multispectral image denoising under the considered
assumptions. In this respect, we will see that the use of a multiscale linear transform
such as the wavelet decomposition may be of great use.

2.3. An overview of discrete wavelets and multiscale transforms

2.3.1. Historical remarks

A discrete 1D signalr with location indexk can be classically written as the fol-
lowing linear expansion : ∑

k∈Z

r(k)δk ,

whereδ represents the discrete (Kronecker) delta sequence located at 0. While this
representation yields optimal sample location, corresponding to the canonical basis,
it lacks in providing insights to the inherent signal structure which are beneficial to
further processing. Due to the approximate linear nature ofmany physical processes,
signal processing techniques have endeavored to employ a wealth of other suitable
linear signal representations, such as the Fourier transform. Under some technical
assumptions, the Fourier transform yields the following expansion of the signal :

∀ν ∈ [0, 1), R(ν) =
∑

k∈Z

r(k) exp(−ı2πkν).

Although widely used, the Fourier transform does not however allows us to enlighten
the time behaviour of the signal. For signals possessing a certain regularity as well as
singularities, localized representations called wavelets have generated a tremendous
interest in the past 20 years. The story of wavelets is actually older, since it originated
a century ago in a famous paper by A. Haar [HAA 10], who considered decomposi-
tions of functions into uniformly convergent series. It is generally considered that dis-
crete wavelets, in their modern form, have emerged in the 1980’s. Most of the related
works have been nicely gathered in [HEI 06]. We follow here a derivation of wavelet
representations based on filter banks, based on the pioneering work by Croisieret al.
[CRO 76].
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2.3.2. 2-band andM -band filter banks

We consider square summable sequences(hm[k])k∈Z with m ∈ {0, . . . ,M − 1}
representing the impulse responses ofM filters. We often characterize each filter by
its frequency responseHm, which is the Fourier transform of its impulse response.
The basic building block for a 2-band filter bank based decomposition is illustrated
in Fig. 2.3 : the digital signalr(k) is decomposed into two frequency bands by a
set of filtersH0 et H1 followed by a decimation by a factor of 2, leading to a pair
of coefficient sequences(r1,0(k))k∈Z and(r1,1(k))k∈Z. The set of analysis filtersH0

andH1 with its associated decimators is called an analysis filter bank. A reconstructed
signalr̃ is obtained fromr1,0 andr1,1 after a factor of 2 upsampling operator followed
by filtering through synthesis filters̃H0 et H̃1 and summation.

-

-

-

-

-

r1,1(k)

r1,0(k)
↓2

↓2

H0

H1

r(k) er(k)↑2

↑2

eH0

eH1

⊕

- -· · ·

- -· · ·-

-

Figure 2.3. Analysis/synthesis 2-band filter bank.

The overall construction satisfies the Perfect Reconstruction property (PR) when
the signals̃r andr are equal (eventually up to an integer delay and a non-zero mul-
tiplicative factor, which can be incorporated in the filter coefficients). Such a prop-
erty is verified for non trivial filter families (i.e. including filters with several de-
lays) [SMI 84], whose properties are summarized for instance in [MEY 90, COH 92,
DAU 92, MAL 08]. A traditional example is given by the Haar analysis filter bank
with analysis filtersH0 andH1 of length 2 :

(
h0[0], h0[1]

)
=

1√
2
(1, 1)

(
h1[0], h1[1]

)
=

1√
2
(−1, 1).

and synthesis filters̃H0 andH̃1 obtained by symmetry fromH0 andH1 around the
time origin.

Due to the relatively strong constraints imposed on the fourfiltersH0, H1, H̃0 and
H̃1 to satisfy the PR property, some authors have proposed a moregeneral structure,
namedM -band filter banks, based on two sets ofM ≥ 2 analysis and synthesis filter
banks, represented in Fig. 2.4.
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-

-

-

-

-

-

-

r1,M−1(k)

r1,1(k)

r1,0(k)
↓M

↓M

↓M

H0

H1

HM−1

...

r(k) er(k)

↑M

↑M

↑M

eH0

eH1

eHM−1

...
⊕

- -· · ·

- -· · ·

- -· · ·-

-

-

Figure 2.4. Analysis/synthesisM -band filter bank.

Similarly, the PR property may be obtained from an appropriate choice of analysis
and synthesis filters [VAI 87], with improved flexibility in the design of the filters,
since the 2-band case now represents a special instance ofM -band filter banks. More-
over, the latter encompasses a large class of standard linear transforms,e.g. block
transforms.

2.3.3. Filter bank based multiresolution analysis

r2,0(k)

. . .
r2,1(k)

r2,M−1(k)
. . .

. . .

r(k) r̃(k)
eH1

eHM−1

↑M

↑M

↑M

eH0

eH1

eHM−1

↑M

↑M

↑M

eH0

H1 ↓M

H0

HM−1 ↓M↓M

H0

HM−1 ↓M

↓M

↓M

H1

Figure 2.5. 2-levelM -band wavelet analysis/synthesis wavelet decomposition.

A multiresolution analysis of a signal consists of a decomposition where the sig-
nal is represented at different scales, allowing us to seizemore easily its fine to coarse
structures. It has been proved especially useful in signal recovery (denoising, deconvo-
lution and reconstruction) as well as in data compression. Apractical multiresolution
analysis is obtained by cascading the basic analysis filter bank block. For the generic
M -band filter bank case, assume thatH0 andHM−1 are a low-pass and a high-pass fil-
ter respectively, whereasH1, . . . ,HM−2 are band-pass filters. The low-pass filtering
by H0 followed by decimation yields a first subsampled approximation of the origi-
nal signal, which may be further decomposed by the same filterbank, as represented
in Fig. 2.5. The band-pass and high-pass branches yield subsampled versions of the
signal details in different frequency bands, complementary to the low-pass approxi-
mation.
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From the continuous-time viewpoint, such a multiresolution analysis can be stud-
ied in the spaceL2(R) of square integrable functions. Successive iterations of the
basicM -band filter bank on the low-pass output is interpreted as approximations at
resolution levelj. The approximation spaces correspond to a decreasing sequence of
nested subspaces(Vj)j∈Z of L2(R), associated with one scaling function (or father
wavelet)ψ0 ∈ L2(R). The multiresolution analysis then corresponds to projections of
the continuous-time signal onto subspaces(Wj,m)j∈Z,m∈{1,...,M−1}, associated with
(M − 1) mother waveletsψm ∈ L2(R), m ∈ {1, . . . ,M − 1} [STE 93]. These func-
tions are solutions of the following scaling equations :

∀m ∈ {0, . . . ,M − 1}, 1√
M

ψm

( t

M

)
=

∞∑

k=−∞

hm[k]ψ0(t − k).

Form ∈ {0, . . . ,M − 1}, j ∈ Z andk ∈ Z, define the family of functions

ψj,m,k(t) = M−j/2ψm(M−jt − k) .

Then, under orthogonality conditions, we can write :

r(t) =
∑

m∈{1,...,M−1}

∑

j∈Z

∑

k∈Z

rj,m(k)ψj,m,k(t)

where
rj,m(k) = 〈r, ψj,m,k〉

and〈·, ·〉 denotes the standard inner product ofL2(R). The latter expansion is called an
M -band wavelet decomposition ofr onto the orthonormal wavelet basis{
ψj,m,k, (j, k) ∈ Z

2,m ∈ {1, . . . ,M − 1}
}

. For more insight on the continuous-
time wavelet decomposition, we refer to [MAL 08, FLA 98].

2.3.4. 2D extension

For simplicity, we only consider separable two-dimensional wavelet transforms
which constitute a direct extension of the 1D case. The imageis processed in two
steps : the filter bank is applied successively to the image rows and columns. Conse-
quently, the obtained 2D wavelets are equal to the tensor product of the 1D wavelets
and define aL2(R2) basis. Applying such a transform to multicomponent images con-
sists of applying the 2D transform on each channelb giving rise to the following
coefficients :∀b ∈ {1, ..., B},∀m = (m1,m2) ∈ {0, ...,M − 1}2,∀j ∈ Z and
∀k = (k1, k2) ∈ Z

2,

r
(b)
j,m(k) = 〈〈r(b), ψj,m1,k1

ψj,m2,k2
〉〉

where〈〈·, ·〉〉 denotes the standard inner product ofL2(R2). The separable property
of the transform allows us to obtain a directional analysis of images, separating the
horizontal, vertical and “diagonal” directions.
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2.3.5. Other related representations

Nevertheless, wavelets suffer from some drawbacks : the first one is a lack of
shift invariance whose potential shift-variant edge artifacts are not desirable in ap-
plications like denoising. Another drawback of decompositions onto wavelet bases
is that they provide a relatively rough directional analysis. Tools that improve the
representation of geometric information like textures andedges, and preserve them
during processing are thus required. Consequently, duringthe last decade, many au-
thors proposed more sophisticated representation tools called frames having exact or
approximate shift-invariance properties and/or better taking into account geometri-
cal image features. One such frames is simply obtained by dropping the decimation
step in the previous filter bank structures, so leading to an undecimated wavelet trans-
form [COI 95, PES 96] which has a redundancy equal to the number J of considered
resolution levels. Note that such overcomplete wavelet representations can be built
by considering the union ofMJ shifted wavelet bases. In this case, cycle spinning
denoising techniques may be used which consist of estimating the signal in each
basis and averaging the resultingMJ estimates. In order to reduce the computa-
tional cost of these decompositions or to better capture geometrical features, other
frame representations have been designed. These decompositions provide a local,
multiscale, directional analysis of images and they often have a limited redundancy
[COI 92, CAN 06, DO 05, MAL 09, CHA 06].

2.3.6. Related model

An M -band orthonormal discrete wavelet decomposition overJ resolution levels
is performed to the observation fieldr(b) for each channelb. This decomposition pro-
ducesM2 − 1 wavelet subband sequencesr

(b)
j,m, m ∈ {0, ...,M − 1}2 \ {(0, 0)}, each

of sizeLj × Lj , at every resolution levelj and an additional approximation sequence

r
(b)
J,0 of sizeLJ × LJ , at the coarsest resolution levelJ (to simplify our presentation,

we consider square images).

On the one hand, the linearity of the Discrete Wavelet Transform (DWT) yields
(see. Fig. 2.6) :

∀k ∈ Kj , rj,m(k) = sj,m(k) + nj,m(k) (2.3)

whereKj = {0, . . . , Lj − 1}2 and

sj,m(k)
△
= [s

(1)
j,m(k), . . . , s

(B)
j,m(k)]⊤,

nj,m(k)
△
= [n

(1)
j,m(k), . . . , n

(B)
j,m(k)]⊤,

rj,m(k)
△
= [r

(1)
j,m(k), . . . , r

(B)
j,m(k)]⊤.
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On the other hand, the orthonormality of the DWT preserves thespatial whiteness of
nj,m. More specifically, it is easily shown that the latter field isan i.i.d.N (0,Γ(n))
random vector process.
A final required assumption is that the random vectors(sj,m(k))k∈K are identically
distributed for any given value of(j,m).

r
(b)
j,m

WT

WT

n
(b)
j,m

WT

s
(b)
j,m

r
(b)

iid N (0, σ2
b )

n
(b)

s
(b)

Figure 2.6. Considered model in the wavelet transform domain.

2.4. A survey of the most relevant univariate and multivariate denoising methods

Our objective is to build an estimator
f

s of the multichannel images from the
degraded observationr. The estimating function is denoted byf and, we have thus
f

s = f(r). In the present case, as shown in Section 2.2.2, we have to deal with Gaussian
noise removal. This is a multivariate estimation problem since the original multichan-
nel image is composed ofB ∈ N

∗ componentss(b) of sizeL×L, with b ∈ {1, . . . , B}.
Different denoising techniques are presented below. We briefly describe Fourier do-
main methods and then we focus our attention on wavelet-based methods. But first
and foremost, we present the general context we adopt for allthe methods operating
in the wavelet domain.

2.4.1. Context in the wavelet domain

In the wavelet domain, by using the notations defined in Section 2.3, the degra-
dation model (2.2) becomes (2.3). Actually, we consider themore flexible situation
where an observation sequence(r

(b)
j,m(k))k∈Kj

of d-dimensional real-valued vectors
with b ∈ {1, . . . , B} andd > 1, is given by

∀k ∈ Kj , r
(b)
j,m(k) = s

(b)
j,m(k) + n

(b)
j,m(k)
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and (n
(b)
j,m(k))k∈Kj

is a zero-mean spatially white Gaussian noise with covariance

matrix Γ(n(b)), which is assumed to be invertible. The three above vectors will be
taken of the form :

r
(b)
j,m(k) =

[
r
(b)
j,m(k)

r̃
(b)
j,m(k)

]
, s

(b)
j,m(k) =

[
s
(b)
j,m(k)

s̃
(b)
j,m(k)

]
, n

(b)
j,m(k) =

[
n

(b)
j,m(k)

ñ
(b)
j,m(k)

]

wherer̃
(b)
j,m(k), s̃(b)

j,m(k) andñ
(b)
j,m(k) are random vectors of dimensiond − 1. These

vectors may for example correspond to neighboring variables of the associated scalar
variablesr(b)

j,m(k), s
(b)
j,m(k) andn

(b)
j,m(k). In this context, our objective is to estimate

s
(b)
j,m(k) using the observation sequence(r

(b)
j,m(k))k∈Kj

. The vectorr(b)
j,m(k) is called

theReference Observation Vector(ROV) from which the following estimate is built :

∀k ∈ Kj ,
f

s
(b)

j,m(k) = f
(b)
j,m

(
r
(b)
j,m(k)

)
.

Explicit choices of the ROV sequence(r(b)
j,m(k))k∈Kj

are detailed in the next para-
graphs.

2.4.2. Popular componentwise methods

A first strategy for denoising a multichannel image is to perform a componentwise
processing without taking into account any statistical dependence existing between
the channels.

2.4.2.1. Frequency domain

A very popular method operating in the frequency domain is the Wiener filter

[WIE 49]. This filter is designed so as to minimize the mean square errorE[|fs
(b)

(k) −
s(b)(k)|2], for everyb ∈ {1, . . . , B}, under the assumption thats(b) is a wide-sense
stationary random field. The frequency response of this filter reads

∀ν ∈ [0, 1)2, H(b)(ν) =
Ss(b)(ν)

Ss(b)(ν) + σ2
b

whereSs(b) denotes the power spectrum density ofs(b) andσb is the standard deviation
of the noise in channelb. One of the main drawbacks of this method is that it requires
the a priori knowledge of the power spectrum density or an empirical estimation of it.
Note that a multicomponent version of the Wiener filter has been derived in [ANG 91]

by using the multi-input multi-output 2D filter minimizingE[‖f

s(k) − s(k)‖2], 1 so
taking into account the spectrum density matrix ofs.

1. ‖.‖ denotes the classical Euclidean norm ofR
B .
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However, it may appear more useful to solve the problem in thewavelet transform
domain [ATK 03], where we can take advantage of a space-frequency representation
of the images. Indeed, noise coefficients are usually distributed over small wavelet
coefficients, whereas signal coefficients are concentratedon high magnitude ones. In
addition, in [DON 94], Donoho and Jonhstone showed that a both simple and efficient
approach for noise removal is available, through wavelet thresholding.

2.4.2.2. Visushrink

Visushrink [DON 93] is a componentwise method, which means that the ROV
reduces to a scalar :

r
(b)
j,m(k) = r

(b)
j,m(k).

Two kinds of thresholdings are usually employed :

– hard thresholding :

∀k ∈ Kj , f
(b)
j,m

(
r
(b)
j,m(k)

)
=

{
r
(b)
j,m(k) if |r(b)

j,m(k)| > χ(b)

0 otherwise.

– soft thresholding :

∀k ∈ Kj , f
(b)
j,m

(
r
(b)
j,m(k)

)
= sign(r

(b)
j,m(k))max{|r(b)

j,m(k)| − χ(b), 0}

=
( |r(b)

j,m(k)| − χ(b)

|r(b)
j,m(k)|

)

+
r
(b)
j,m(k) (2.4)

wheresign(·) is the signum function.

These two shrinkage rules are illustrated in Fig. 2.7. The problem here is to find the
best threshold valueχ(b) > 0. In [DON 93], the authors have derived the so-called uni-
versal thresholdχ(b) = 2σb

√
log(L) which relies on the fact that the maximum values

of any set ofL2 independent random variables identically distributed asN (0, σ2
b ) are

smaller than the proposed thresholdχ(b) with a high probability [MAL 08, p. 556].

2.4.3. Extension to block-based method

In order to take into account correlations between wavelet coefficients, some au-
thors have proposed to apply a block shrinkage. More precisely, in [CAI 01], it is pro-
posed to exploit the spatial dependences, which corresponds to the following choice
of the ROV :

r
(b)
j,m(k) = [r

(b)
j,m(k), r

(b)
j,m(k − k1), . . . , r

(b)
j,m(k − kd−1)]

⊤

wherek1, . . . ,kd−1 allow us to define the neighborhood of interest for the pixelk.
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Figure 2.7. Hard (continuous line) and soft (dashed line) thresholdings.

The associated shrinkage rule named “NeighBlock” is given by

f

s
(b)

j,m(k) =

(
‖r(b)

j,m(k)‖2 − χ̄dσ2
b

‖r(b)
j,m(k)‖2

)

+

r
(b)
j,m(k)

whereχ̄ > 0 andd is the number of components in the ROV.

In [ŞEN 02], interscale dependencies have been exploited by defining the follow-
ing ROV :

r
(b)
j,m(k) = [r

(b)
j,m(k), r

(b)
j+1,m(⌈ k

M
⌉), . . . , r(b)

J,m(⌈ k

MJ−j
⌉)]⊤.

The associated estimator called “bivariate shrinkage” is defined by :

f

s
(b)

j,m(k) =



‖r(b)

j,m(k)‖ −
√

3σ2
b

σs(b)

‖r(b)
j,m(k)‖




+

r
(b)
j,m(k)

whereσs(b) > 0. It can be derived by a Maximum A Posteriori (MAP) rule by consid-
ering as a prior model for the wavelet coefficients the non-Gaussian bivariate proba-
bility density function

p(s
(b)
j,m(k), s

(b)
j+1,m(⌈k

2
⌉)) ∝ exp

(
−

√
3

σs(b)

√
∣∣s(b)

j,m(k)
∣∣2 +

∣∣s(b)
j+1,m(⌈k

2
⌉)

∣∣2
)
.

Note that interscale dependencies are also taken into account in [SCH 04] where a
multivalued image wavelet thresholding is performed. Other works developed Bayesian
estimation procedures imposing a prior on the noise-free data.
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2.4.4. Bayesian multichannel approaches

As previously mentioned, Bayesian approaches require a prior data statistical mod-
eling.

2.4.4.1. Bernoulli-Gaussian priors

A Bernoulli-Gaussian (BG) prior is an appropriate model to reflect the sparsity of
the wavelet representation of natural images [ABR 98, LEP 99]. With this statistical
model, some authors derived Bayesian estimates [BEN 03, ELM05].

Let us first present the method proposed in [BEN 03, ELM 05]. Ineach subband
of index(j,m), the probability distributionpj,m of the coefficients(sj,m(k))k∈K can
be written as follows :

∀u ∈ R
B , pj,m(u) = (1 − ǫj,m)δ(u) + ǫj,m g

0,Γ
(s)
j,m

(u)

whereg
0,Γ

(s)
j,m

denotes theN (0,Γ
(s)
j,m) multivariate normal probability density func-

tion. The mixture parameterǫj,m corresponds to the probability that a coefficient vec-
tor sj,m(k) contains useful information. In order to avoid degeneratedMAP estimates,
it is used to couple the multivariate prior model with hiddenrandom variablesqj,m(k).
The sequence(qj,m(k))k∈Kj

is an i.i.d. binary sequence of random variables defining
the following conditional densities : for everyk ∈ Kj ,

p(sj,m(k) | qj,m(k) = 0) = δ(sj,m(k)),

p(sj,m(k) | qj,m(k) = 1) = g
0,Γ

(s)
j,m

(sj,m(k))

with P(qj,m(k) = 1) = ǫj,m ∈ [0, 1]. In practice, the hyperparametersΓ
(s)
j,m and

ǫj,m related to the BG priors can be estimated by a moment method oran Expectation
Maximization (EM) technique. As the noise is Gaussian, the following conditional
probability densities are easily derived : for everyk ∈ Kj ,

{
p(rj,m(k) | qj,m(k) = 0) = g0,Γ(n)(rj,m(k))
p(rj,m(k) | qj,m(k) = 1) = g

0,Γ(n)+Γ
(s)
j,m

(rj,m(k)).

Thus, a two-step estimation procedure can be used for noise removal :

1) For everyk ∈ Kj , the estimate
f

q j,m(k) of qj,m(k) is set to 1 if :

P(qj,m(k) = 0 | rj,m(k)) < P(qj,m(k) = 1 | rj,m(k)),

otherwise
f

q j,m(k) is set to 0. This implies that :

f

q j,m(k) =

{
1 if rj,m(k)⊤Mj,mrj,m(k) > χj,m,
0 otherwise
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whereMj,m is the semi-definite positive matrix :

Mj,m = (Γ(n))−1 − (Γ
(s)
j,m + Γ(n))−1,

and the thresholdχj,m is defined by

χj,m = 2 ln

(
1 − ǫj,m

ǫj,m

)
+ ln

(
| Γ(s)

j,m + Γ(n) |
| Γ(n) |

)

where|A| denotes the determinant of matrixA.

2) On the one hand, if
f

q j,m(k) = 0, it is expected that the related observation is
dominated by the noise, according to the definition of the hidden variables. Hence, it is

natural to set
f

sj,m(k) = 0. On the other hand, if
f

q j,m(k) = 1, the Bayesian estimate
of sj,m minimizing a quadratic cost is computed. It corresponds to the a posteriori
conditional mean. The posterior distribution is Gaussian as the bivariate distribution
of (rj,m(k), sj,m(k)) is Gaussian whenqj,m(k) = 1. It is easy to check that :

∀k ∈ Kj , E[sj,m(k) | rj,m(k), qj,m(k) = 1] = Qj,mrj,m(k)

where
Qj,m

△
=Γ

(s)
j,m(Γ

(s)
j,m + Γ(n))−1.

It appears that the estimator amounts to a shrinkage rule that performs a tradeoff be-
tween a linear estimation in the sense of a minimum mean square error and a hard
thresholding.

An alternate approach to this two-step estimation procedure is the use of the a
posteriori conditional mean which, for everyk ∈ Kj , can be expressed as

E[sj,m(k) | rj,m(k)] = E[sj,m(k) | rj,m(k), qj,m(k) = 1]P(qj,m(k) = 1 | rj,m(k))

sincep(sj,m(k) | rj,m(k), qj,m(k) = 0) = δ(sj,m(k)). Besides, we can write :

∀k ∈ Kj , P(qj,m(k) = 1 | rj,m(k)) =
p
(
rj,m(k) | qj,m(k) = 1

)
P
(
qj,m(k) = 1

)

p
(
rj,m(k)

)

=
ǫj,mθ1

(
rj,m(k)

)

ǫj,mθ1

(
rj,m(k)

)
+ (1 − ǫj,m)θ0

(
rj,m(k)

)
△
= γǫj,m

(rj,m(k))

with the following definitions :

θ0
△
= g0,Γ(n) , θ1

△
= g

0,Γ
(s)
j,m

+Γ(n) .

The optimal mean-square Bayesian estimate can be easily deduced :

∀k ∈ K,
f

sj,m(k) = γǫj,m
(rj,m(k))Qj,mrj,m(k). (2.5)

Note that in [ELM 05], interscale dependencies are taken into account in addition to
cross-channel ones.
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2.4.4.2. Laplacian mixture model

A Bayesian componentwise approach was proposed by Piz̆urica and Philips
[PIZ̆ 06]. They have described a simple way for applying it to a multicomponent im-
age, when the noise is componentwise decorrelated (Γ(n) = Γ

(n)
1 = σ2 IB). For

each component at each resolution level and in each orientedsubband, the princi-
ple is to consider a mixture of two truncated Generalized Gaussian (GG) (also called
generalized Laplacian) distributions where a Bernoulli random variable controls the
switching between the central part of the distribution and its tails. More precisely, for
each componentb, the authors have considered as a prior the GG distribution :

∀u ∈ R, p
(b)
j,m(u) =

(
λ

(b)
j,m

)1/β
(b)
j,m

2Γ(1/β
(b)
j,m)

exp(−λ
(b)
j,m|u|β

(b)
j,m)

whereΓ(z) =
∫ +∞

0
tz−1e−tdt is the Gamma function,λ(b)

j,m > 0 is the scale pa-

rameter andβ(b)
j,m > 0 is the shape parameter. It is worth pointing out that the prior

hyperparameters can be easily estimated from the fourth moments of the noisy co-
efficientsr

(b)
j,m [SIM 96]. Then, they have defined a signal of interest as a noise-free

coefficient which exceeds a given thresholdT
(b)
j,m. To estimate the signal of interest

from the noisy observations, they have introduced a sequence of Bernoulli variables
q
(b)
j,m(k) associated with the two hypothesesH0 “the noise-free signal is not of inter-

est” andH1 “the noise-free signal is of interest” :

H0 : |s(b)
j,m(k)| ≤ T

(b)
j,m and H1 : |s(b)

j,m(k)| > T
(b)
j,m.

In other words, ifq(b)
j,m(k) = 1, the coefficients(b)

j,m(k) is of interest. Therefore, it is

possible to computeP
(
q
(b)
j,m(k) = 1

)
:

P
(
q
(b)
j,m(k) = 1

)
= 1 − Γinc

(
λ

(b)
j,m(T

(b)
j,m)β

(b)
j,m , 1/β

(b)
j,m

)

whereΓinc is the incomplete Gamma function. Hence, the following conditional prob-
abilities can be easily derived :

p(s
(b)
j,m(k)|q(b)

j,m(k) = 0) =

{
C0 exp(−λ

(b)
j,m|s(b)

j,m(k)|β
(b)
j,m) if |s(b)

j,m(k)| ≤ T
(b)
j,m

0 otherwise

p
(
s
(b)
j,m(k)

∣∣q(b)
j,m(k) = 1) =

{
0 if |s(b)

j,m(k)| ≤ T
(b)
j,m

C1 exp
(
− λ

(b)
j,m|s(b)

j,m(k)|β
(b)
j,m

)
otherwise

whereC0 andC1 are normalizing constants. For multivalued images, the authors pro-
posed to exploit a local information from the different channels by defining the band
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activity indicatorzj,m as the average over theB channels of the magnitudes of theB
homologous noisy coefficients :

zj,m(k) =
1

B

B∑

b′=1

|r(b′)
j,m(k)|.

Consequently, the local minimum mean square estimator is

E[s
(b)
j,m(k)|r(b)

j,m(k), zj,m(k)]

= P
(
q
(b)
j,m(k) = 1|r(b)

j,m(k), zj,m(k
)
)E[s

(b)
j,m(k)|r(b)

j,m(k), q
(b)
j,m(k) = 1]

+ P(q
(b)
j,m

(
k) = 0|r(b)

j,m(k), zj,m(k)
)
E[s

(b)
j,m(k)|r(b)

j,m(k), q
(b)
j,m(k) = 0]

by assuming that the coefficients(r(b′)
j,m(k))1≤b′≤B are independent conditionally to

H0 or H1. The sparseness of the wavelet representation allows us to consider that the
second term takes very low values and to approximateE[s

(b)
j,m(k)|r(b)

j,m(k), q
(b)
j,m(k) =

1] by r
(b)
j,m(k). Then, the following estimate (called ProbShrink) is derived for each

subband(j,m) and channelb :

f

s
(b)

j,m(k) = P
(
q
(b)
j,m(k) = 1|r(b)

j,m(k), zj,m(k)
)
r
(b)
j,m(k).

After some manipulations, the explicit expression of the ProbShrink estimate is :

f

s
(b)

j,m(k) =
η
(
r
(b)
j,m(k)

)
ξ
(
r
(b)
j,m(k)

)
µ

1 + η
(
r
(b)
j,m(k)

)
ξ
(
r
(b)
j,m(k)

)
µ

r
(b)
j,m(k)

where

η
(
r
(b)
j,m(k)

)
=

p
(
r
(b)
j,m(k)|q(b)

j,m(k) = 1
)

p
(
r
(b)
j,m(k)|q(b)

j,m(k) = 0
)

ξ
(
r
(b)
j,m(k)

)
=

p
(
zj,m(k)|q(b)

j,m(k) = 1
)

p
(
zj,m(k)|q(b)

j,m(k) = 0
)

µ =
P
(
q
(b)
j,m(k) = 1

)

1 − P
(
q
(b)
j,m(k) = 1

) .

In practice, it is used to setT (b)
j,m = σ and the computation of the conditional den-

sitiesp
(
r
(b)
j,m(k)|q(b)

j,m(k) = 1
)

andp
(
r
(b)
j,m(k)|q(b)

j,m(k) = 0
)

can be deduced from

p
(
s
(b)
j,m(k)| q

(b)
j,m(k) = 1

)
and p

(
s
(b)
j,m(k)|q(b)

j,m(k) = 0
)
. Indeed, we have :∀ℓ ∈



Wavelet transform for the denoising of multivariate images 27

{0, 1},

p
(
r
(b)
j,m(k)|q(b)

j,m(k) = ℓ
)

=

∫

R

g0,σ2(r
(b)
j,m(k) − s

(b)
j,m(k))p

(
s
(b)
j,m(k)|q(b)

j,m(k) = ℓ
)
ds

(b)
j,m(k),

whereg0,σ2 denotes theN (0, σ2) probability density. For the statistical characteriza-

tion of the band activity indicatorzj,m, it is assumed that the coefficients(r
(b′)
j,m(k))1≤b′≤B

are all distributed according to eitherH0 or H1. Therefore, the conditional density
of zj,m(k) given q

(b)
j,m(k) is theB times convolution of the conditional densities of

|r(b′)
j,m(k)| givenq

(b)
j,m(k).

2.4.4.3. Gaussian scale mixture model

Inspired by the work for monochannel images [POR 03], Scheunders and de Backer
[SCH 07] have assumed that the unknown signal vectorsj,m can be expressed as fol-
lows :

sj,m(k) =
√

zj,m(k)uj,m(k)

whereuj,m(k) is a zero-mean normal vectorN (0,Γ(uj,m)) andzj,m(k) is a positive
scalar random variable independent ofuj,m(k). The prior probability density function
of sj,m(k) can be considered as a Gaussian Scale Mixture (GSM) as we have:

p(sj,m(k)) =

∫ ∞

0

p(sj,m(k)|zj,m(k))p(zj,m(k))dzj,m(k).

Indeed, p(zj,m(k)) corresponds to a mixing density andsj,m(k)|zj,m(k) ∼
N (0, zj,m(k)Γ(uj,m)). The posterior mean estimateE[sj,m(k)|rj,m(k)] can then be
expressed as :

E[sj,m(k)|rj,m(k)] =
∫ ∞

0

p(zj,m(k)|rj,m(k))E[sj,m(k)|rj,m(k), zj,m(k)]dzj,m(k).

On the one hand, we note that the involved conditional posterior mean in the right
hand side of the previous equation corresponds to the Wienerestimate :

E[sj,m(k)|rj,m(k), zj,m(k)] = zj,m(k)Γ(uj,m)
(
zj,m(k)Γ(uj,m) + Γ(n)

)−1
rj,m(k).

On the other hand, Bayes rule allows us to expressp(zj,m(k)|rj,m(k)) as :

p(zj,m(k)|rj,m(k)) ∝ p(rj,m(k)|zj,m(k))p(zj,m(k)).
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In practice, in order to calculate this conditional probability, specifying the distribution
of zj,m(k) is required. In the case of monochannel images, Portillaet al. [POR 03]
have proposed the (improper) Jeffrey’s prior :

p(zj,m(k)) ∝ 1/zj,m(k).

In [SCH 07], another alternative has been considered when a single component noise-
free imagey is available, which is employed as an ancillary variable. Itis assumed that
the joint distribution of(sj,m(k), yj,m(k)) is a GSM. Consequently, it is found that the
probability ofsj,m(k) conditioned onyj,m(k) is a GSM. Then, by adopting the same
strategy as previously (development of the conditional posteriori means and applica-
tion of Bayes rule), it has been shown that the Bayesian estimate
E[sj,m(k)|rj,m(k), yj,m(k)] can be explicitly calculated.

2.4.5. Variational approaches

In wavelet-based variational approaches, the wavelet coefficients(
f

sj,m)j,m of the

denoised multichannel image
f

s are obtained by minimizing the objective function :

(uj,m)j,m 7→ 1

2

∑

k∈K

(
(u(k) − r(k)

)⊤
Q−1

(
(u(k) − r(k)

)
+ h

(
(uj,m)j,m

)
(2.6)

whereu designates a generic multispectral image withB channels of sizeL × L and
(uj,m)j,m is its wavelet representation,Q is a definite positive matrix of sizeB × B
andh is some appropriate function. The first quadratic term represents a data fidelity
measure with respect to the observation model. The functionh usually corresponds to
a penalty term (also called regularization term) used to incorporate prior information
about the original images. In the particular case whenQ = Γ(n) andexp(−h(·)) is
(up to a multiplicative constant) a probability density function, this approach amounts
to a MAP approach whereh is the potential associated with the prior distribution
adopted for the wavelet coefficients ofs.
Some classical choices forh are :

– h = iC where iC is the indicator function of a closed convex setC
(iC

(
(uj,m)j,m

)
= 0 if

(
uj,m)j,m ∈ C and+∞ otherwise). This function imposes a

hard constraint on the solution (e.g. the positivity of its pixel values).

– h
(
(uj,m)j,m

)
= λ

∑B
b=1

∑
k∈K

‖∇u(b)(k)‖2
2 where∇u(b) is a discrete version

of the gradient ofu(b), ‖ · ‖2 is the Euclidean norm ofR2 andλ is a positive factor.
This corresponds to a Tikhonov regularization [TIK 63], which serves to ensure the
smoothness of the denoised image.

– h
(
(uj,m)j,m

)
= λ

∑B
b=1

∑
k∈K

‖∇u(b)(k)‖2 which can be viewed as a discrete
version of a Total Variation (TV) penalization [RUD 92, TEB 98]. A multivariate ver-
sion of this function was also proposed in [BLO 98] (see also [AUJ 06] for extensions).
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– h
(
(uj,m)j,m

)
=

∑B
b=1

∑
(j,m) λ

(b)
j,m

∑
k∈Kj

|u(b)
j,m(k)|β

(b)
j,m where the expo-

nentsβ(b)
j,m and the scaling parametersλ

(b)
j,m are positive. This function is the poten-

tial of an independent Generalized Gaussian distribution for the wavelet coefficients
[CHA 00, ANT 02]. Under some assumptions, it can also be interpreted as a regularity
measure in terms of a Besov norm [CHA 98, LEP 01]. A particularcase of interest is
when the exponents are all equal to 1. The resultingℓ1 norm is used to promote the
sparsity of the wavelet representation of the solution, by setting many of its coeffi-
cients to zero [TRO 06].

Note that a composite form consisting of a sum of several of the above functions
can also be considered. Each of these penalizations may indeed present its own advan-
tages and drawbacks. For example, the Tikhonov regularization tends to oversmooth
image edges whereas the TV penalization may introduce visual staircase effects.
Another point to be emphasized is that the solution to the minimization of (2.6) can
be obtained in different manners, according to the choice ofh. Sometimes, an explicit

expression of
f

sj,m can be derived. This arises, in particular, for Tikhonov regular-

ization or, whenQ is a diagonal matrix and a GG potential is used withβ
(b)
j,m ∈

{1, 4/3, 3/2, 2, 3, 4} [CHA 07]. In other cases, iterative algorithms must be applied to

compute
f

sj,m. When a hard constraint is imposed, the constraint setC often is decom-
posed as the intersection of elementary closed convex sets and iterative techniques of
projection onto each of these sets can be applied [COM 96, COM03, COM 04]. One
of such approaches is the well-known Projections Onto Convex Sets (POCS) algo-
rithm. Provided thath is a convex function, other iterative convex optimization algo-
rithms can be employed to bring efficient numerical solutions to the considered large-
size variational problems (see [CHA 07, COM 07, COM 08] and references therein).
These optimization methods are also useful when a redundantframe representation of
the data is used instead of an orthonormal one.

2.4.6. Stein-based approaches

As already mentioned, the main problem in wavelet coefficient thresholding is the
determination of the threshold value. Furthermore, in practice, it often appears prefer-
able not to require some prior knowledge about the original data. A solution to allevi-
ate such problems is to invoke Stein’s principle [STE 81] which can be formulated as
follows :
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Proposition 1 Using the notations of Section 2.4.1, letf
(b)
j,m : R

d → R be a contin-
uous, almost everywhere differentiable function such that:

∀θ ∈ R
d,

lim
‖t‖→+∞

f
(b)
j,m(t) exp

(
− (t − θ)⊤(Γ(n(b)))−1(t − θ)

2

)
= 0;

E[|f (b)
j,m(r

(b)
j,m(k))|2] < +∞ and E

[∥∥∂f
(b)
j,m(r

(b)
j,m(k))

∂r
(b)
j,m(k)

∥∥]
< +∞.

Then,

E[f
(b)
j,m(r

(b)
j,m(k))s

(b)
j,m(k)] = E[f

(b)
j,m(r

(b)
j,m(k))r

(b)
j,m(k)]−

E

[∂f
(b)
j,m(r

(b)
j,m(k))

∂r
(b)
j,m(k)

]⊤
E[n

(b)
j,m(k)n

(b)
j,m(k)]. (2.7)

2.4.6.1. Expression of the quadratic risk using Stein’s formula

A standard criterion in signal/image processing is the meansquare error (also
called quadratic risk) defined as

E[‖sj,m(k) − f

sj,m(k)‖2]

=

B∑

b=1

E[|s(b)
j,m(k) − f

(b)
j,m(r

(b)
j,m(k))|2]

=

B∑

b=1

(
E[|s(b)

j,m(k)|2] + E[|f (b)
j,m(r

(b)
j,m(k))|2] − 2E[f

(b)
j,m(r

(b)
j,m(k))s

(b)
j,m(k)]

)

= E[‖rj,m(k) − f

sj,m(k)‖2] + 2

B∑

b=1

E

[∂f
(b)
j,m(r

(b)
j,m(k))

∂r
(b)
j,m(k)

]⊤
E[n

(b)
j,m(k)n

(b)
j,m(k)].

The last equality has been obtained by using Stein’s formula(see (2.7)). The advantage
of the latter expression is that it only depends on the observed data and no longer on
the unknown original data. This means that no prior information is necessary to build
an estimate minimizing the quadratic risk. Another remark to be formulated is that the
minimization of the risk will be performed by optimizing a limited number of variables
parameterizing the estimatorf

(b)
j,m (e.g. a threshold value). Due to the assumption of

stationarity made at the end of Section 2.3, it can be noticedthat the above risk is
independent ofk, so that it will denotedRj,m in the next paragraphs.
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2.4.6.2. Existing methods based on Stein’s principle

We will now present a variety of Stein-based estimators (denoted hereafter by
the SURE prefix for Stein’s Unbiased Risk Estimate) ranging from componentwise
thresholding rules to more sophisticated block-based methods.

– SUREshrink [DON 95] is a very popular componentwise method. It thus op-
erates separately on each channelb. It consists of a soft-thresholding as given by
(2.4), where subband-dependent threshold valuesχ

(b)
j,m are computed in order to min-

imize the contributionR(b)
j,m of the b-th channel to the quadratric riskRj,m. More

exactly, the classical sample estimateR̃
(b)
j,m of R

(b)
j,m is employed. Then, the vari-

ables|r(b)
j,m(k)| are sorted in descending order, so that|r(b)

j,m(k1)| ≥ |r(b)
j,m(k2)| ≥ . . .

≥ |r(b)
j,m(kL2

j
)|. It can then be shown that if, fori0 ∈ {2, . . . , L2

j}, |r(b)
j,m(ki0−1)| >

χ
(b)
j,m ≥ |r(b)

j,m(ki0)|, the risk estimatẽR(b)
j,m is a second-order binomial increasing

function of χ
(b)
j,m over the considered interval. It can be deduced that the optimal

threshold value over the interval[|r(b)
j,m(ki0)|, |r(b)

j,m(ki0−1)|) is |r(b)
j,m(ki0)|. So, the

optimal threshold value overR+ is found by evaluating̃R(b)
j,m on the finite set of can-

didate values{|r(b)
j,m(k1)|, . . . , |r(b)

j,m(kL2
j
)|, 0}.

– Starting from the Bayesian estimate given by (2.5), the authors in [BEN 05]
derived a multivariate shrinkage estimator called SUREVECT. More precisely, the
parametersǫj,m andQj,m are directly adjusted so as to minimizeRj,m. For simplicity,

the matrixΓ(s)
j,m involved in the expression of theθ1 function has not been included in

the set of parameters estimated with a SURE procedure. An approximate value (like
that obtained by a moment method) can be employed. It can be proved that

Rj,m = tr
(
(Qj,m − Aj,m)Cj,m(Qj,m − Aj,m)⊤ − Aj,mCj,mA⊤

j,m

)

with

Aj,m
△
=Bj,m

(
Cj,m

)−1

Bj,m
△
=E[γǫj,m

(rj,m(k))rj,m(k)(rj,m(k))⊤] − Γ
(
E[γǫj,m

(rj,m(k))]IB

+E[∇γǫj,m
(rj,m(k))(rj,m(k))⊤]

)

Cj,m
△
=E[γ2

ǫj,m
(rj,m(k))rj,m(k)(rj,m(k))⊤]

where it has been assumed thatCj,m is invertible. It is easily shown that setting
Qj,m = Aj,m allows us to minimizeRj,m and that the optimal valueǫj,m within
[0, 1] should maximizetr(Bj,mC−1

j,mB⊤
j,m). It appears that this amounts to a mere

optimization of a one-variable function which can be performed with conventional
numerical optimization tools.
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– More recently, we proposed an approach to take into accountspatial and cross-
channel dependences by using Stein’s principle [CHA 08]. More precisely, the pro-
posed estimator takes the form :

f

s
(b)

j,m(k) = f
(b)
j,m(r

(b)
j,m(k)) = η

χ
(b)
j,m

(‖r(b)
j,m(k)‖α

(b)
j,m) (ρ

(b)
j,m)⊤r

(b)
j,m(k)

whereη
χ

(b)
j,m

(·) is the thresholding function given by

∀τ ∈ R+, η
χ

(b)
j,m

(τ) =
(τ − χ

(b)
j,m

τ

)

+

andχ
(b)
j,m ≥ 0, α

(b)
j,m > 0 andρ

(b)
j,m ∈ R

d. The vectorρ(b)
j,m corresponds to a linear

parameter. This estimator generalizes the block-based estimator proposed in [CAI 01,
ŞEN 02] as well as linear estimators. The parameters are computed similarly to the
SUREShrink approach (more details can be found in [CHA 08]).Although the choice
of the ROV is quite flexible, examples of some ROVs corresponding to spatial and
across channel neigborhoods were considered in [CHA 08].

– Another efficient approach is SURE-LET (the SURE-Linear Expansion of
Threshold [LUI 08]). Then, the considered expression of theestimator is

f
(b)
j,m(r

(b)
j,m(k)) = a

(b),1
j,m r

(b)
j,m(k) + a

(b),2
j,m

(
1 − exp

(
−

(r
(b)
j,m(k))8

(ω
(b)
j,m)8

))
r
(b)
j,m(k)

whereω
(b)
j,m > 0 and a

(b),1
j,m , a

(b),2
j,m are real-valued weighting factors. In the case

when(a
(b),1
j,m , a

(b),2
j,m ) = (1, 0) a linear estimator is obtained, whereas in the case when

(a
(b),1
j,m , a

(b),2
j,m ) = (0, 1) andω

(b)
j,m ≫ 1, a thresholding-like rule is obtained. Note that

other possible choices of the nonlinear part of the estimator have been proposed in
[PES 97, RAP 08]. This estimator possesses a number of attractive features :

- the determination of the optimal values ofa
(b),1
j,m anda

(b),2
j,m minimizingR

(b)
j,m

reduces to solving a set of linear equations.
- The use of a linear combination of more than two terms in the estimator

expression can be addressed in a similar manner.
- The approach can be extended to the multichannel case [LUI 08] (interscale

dependencies are also taken into account).
- When employing non-orthonormal representations (e.g. redundant frames),

there is no equivalence between the minimization ofRj,m for each subband and the
minimization of the mean square error in the space domain. However, for a SURE-
LET estimator, it turns out that the minimization of the latter criterion can be easily
carried out, so ensuring an optimal use of the flexibility offered by non-orthonormal
representations.
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2.5. Method comparisons

In this section, we will give some insights about the appropriateness of a noise
removal method for a given application. Indeed, the previous survey has indicated that
specifying a denoising method involves several choices such as :

– componentwise processing or joint processing,

– Bayesian strategy or non Bayesian approach,

– choice of the representation,

– computational complexity.

In what follows, we will briefly discuss these issues, some presented methods being
illustrated in Fig. 2.8.

2.5.1. Componentwise processing versus joint processing

A great number of efficient denoising methods have been already developed for
monochannel images. Hence, the temptation is strong to directly apply them to each
component of a given noisy multichannel image. However, if correlations exist across
the components, it is judicious to exploit them. A basic method is a two-step procedure
which firstly removes such correlations through a principalcomponent analysis or
an independent component analysis and, then applies a monovariate denoising for
each transformed component [GRE 88]. However, in general, it has been observed that
jointly denoising the components outperforms the basic two-step method [BEN 05,
LUI 08].

2.5.2. Bayesian strategy versus non Bayesian approach

Wavelet transforms are known to generate very compact representations of regular
signals. This is an appealing property which simplifies the statistical prior modelling
required in the Bayesian framework. In this respect, for both componentwise and joint
processing, it is important to note that the wavelet coefficients have been modelled in
different ways :

– marginal probabilistic models for the subband coefficients,

– joint probabilistic models accounting for interscale dependencies between the
subband coefficients [ŞEN 02], [ROM 01, ELM 05] or for spatial intrascale depen-
dencies [MAL 97], [CHA 08].

The more accurate the prior distribution, the better the performance. Concerning mul-
tivariate estimators, it has been found that Bernoulli-Gaussian and Gaussian Scale
Mixtures priors behave similarly in terms of signal-to-noise ratios for natural images,
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and they are clearly better than Gaussian priors [DEB 08].
It is worth pointing out that the Bayesian approach presentstwo main drawbacks.
Firstly, there may exist a mismatch between the data and the model and, the structure
of the estimator may thus be inappropriate. Secondly, the values of the hyperparam-
eters may be suboptimal as they are derived from statisticalinference exploiting the
prior model. These shortcomings have made attractive non Bayesian methods. In the
case of Stein-based approaches however, the choice of the estimator form is a key is-
sue. In [BEN 05], it has been shown that SUREVECT outperformsthe tested Bayesian
denoising methods. Combination of nonlinear functions (LET) also allows us to define
a flexible class of estimators.

2.5.3. Choice of the representation

Very often, the performance of a denoising method (for a given noise level) is
measured in terms of the averageMSEim of the mean square errorsMSE

(b)
im in each

channelb :

MSEim =
1

B

B∑

b=1

MSE
(b)
im with MSE

(b)
im =

1

L2

∑

k∈K

|s(b)(k) − f

s
(b)

(k)|2.

When the noise is removed in the WT domain, the average mean square errorMSEtr

of theB mean square errorsMSE
(b)
tr in the transform domain is very often employed :

MSEtr =
1

B

B∑

b=1

MSE
(b)
tr with MSE

(b)
tr =

1

L2

∑

(j,m)

∑

k∈Kj

|s(b)
j,m(k) − f

s
(b)

j,m(k)|2.

Notice however that only some of the reported methods explicitly introduce the mean
square error criterion in the optimization process for the related estimator.
On the one hand, it must be pointed out that the minimization of the mean square error
between the wavelet coefficients is equivalent to the minimization of the mean square
error in the image domain if and only if the wavelet representation is orthonormal.
Consequently, when the image is decomposed on a redundant frame, the minimization
of MSEtr is suboptimal. On the other hand, it has been noticed by many authors that
better results are often obtained with redundant decompositions. One of the main rea-
sons for this fact is that these transforms have better translation invariance properties,
which is beneficial to the reduction of Gibbs-like visual artifacts. Especially, curvelet
[CAN 99] and dual-tree wavelet decompositions [SEL 05, CHA 06] have provided re-
cent examples of multiscale transforms giving rise to redundant representations which
are especially good for denoising purposes.
The suboptimality of the denoising on a redundant representation has been alleviated
for LET estimators since it has been proved that it is possible to directly minimize an
unbiased estimate ofMSEim [LUI 08].
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2.5.4. Computational complexity

As noticed in [DEB 08], it is clear that the computational load is increased by a
joint processing rather than separate ones. Besides, in Bayesian approaches, the hyper-
parameter estimation may imply a high computational cost. Despite their versatility,
variational methods requiring iterative solutions are also time-consuming.

Altough they yield improved results, redundant representations involve a signifi-
cant increase of the computational complexity when the redundancy factor is high.

2.6. Conclusions and perspectives

We have given a broad overview of multivariate image denoising methods, with
a special emphasis on wavelet-based approaches, since wavelets efficiently represent
image features (both textures and edges). Under different noise correlation models,
a variety of transform domain estimators have been described, ranging from Wiener
to Stein-based via Bayesian or variational approaches. While most of these methods
have been presented for orthonormal wavelet bases, some of them can be applied to
more general frames. We would also like to mention that we do not have provided an
exhaustive list of the available denoising methods. For example, the reader is referred
to [BUA 05] for a description of other non-wavelet based denoising approaches.

Other degradations such as blurring may also affect multichannel images, essen-
tially due to the optical sensor. Recent works now aim at developing advanced wavelet-
based methods for restoring multichannel images degraded by a blurandan additive
noise.
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(a) SNR= −2.91 dB (b) SNR= 4.07 dB

(c) SNR= 8.33 dB (d) SNR= 8.59 dB

(e) SNR= 8.66 dB (f) SNR= 8.87 dB

Figure 2.8. Denoising results on the first component of a Landsat7 satellite
image (see Fig. 2.2). (a) Degraded image and restored images using (b) Wiener

filter, (c) BLS-GSM [POR 03], (d) Probshrink [PIZ̆ 06], (e) SUREVECT
[BEN 05] and (f) Block-based wavelet estimate [CHA 08]
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