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Abstract—The use of multicomponent images has become wide-
spread with the improvement of multisensor systems having in-
creased spatial and spectral resolutions. However, the observed im-
ages are often corrupted by an additive Gaussian noise. In this
paper, we are interested in multichannel image denoising based
on a multiscale representation of the images. A multivariate sta-
tistical approach is adopted to take into account both the spatial
and the intercomponent correlations existing between the different
wavelet subbands. More precisely, we propose a new parametric
nonlinear estimator which generalizes many reported denoising
methods. The derivation of the optimal parameters is achieved by
applying Stein’s principle in the multivariate case. Experiments
performed on multispectral remote sensing images clearly indi-
cate that our method outperforms conventional wavelet denoising
techniques.

Index Terms—Block estimate, denoising, dual-tree wavelet
transform, frames, M -band wavelet transform, multichannel
noise, multicomponent image, multivariate estimation, nonlinear
estimation, Stein’s principle, thresholding.

I. INTRODUCTION

ANY real-world images are contaminated by noise

during their acquisition and/or transmission. In partic-
ular, multichannel imaging is prone to quality degradation due
to the imperfectness of the sensors often operating in different
spectral ranges [1], [2]. In order to alleviate the influence of
such disturbing artifacts on subsequent analysis procedures,
denoising appears as a crucial initial step in multicomponent
image enhancement. In this context, attention has been paid
to developing efficient denoising methods. Usually, the noise
removal problem is considered as a regression problem. The
challenge thus resides in finding realistic statistical models
which lead to both efficient and tractable denoising approaches.
To this respect, linearly transforming the signal from the spatial
domain to a more suitable one may drastically improve the de-
noising performance. The rationale for such a transformation is
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the observation that some representations possessing good en-
ergy concentration and decorrelation properties tend to simplify
the statistical analysis of many natural images. For instance,
the discrete wavelet transform (DWT) constitutes a powerful
tool for image denoising [3], [4]. The DWT, computed for each
channel/component separately, usually yields “larger” coeffi-
cients for signal features and “smaller” ones for noise since
it forms an unconditional basis for several classes of regular
signals [5]. For mono-channel signals or images, the seminal
work of Donoho and Johnstone has shown that a mere wavelet
coefficient thresholding constitutes a simple yet effective
technique for noise reduction [6]. Based on Stein’s unbiased
risk estimator (SURE), they have proposed the SUREshrink
technique [7]. Subsequently, several extensions of their work
have been performed, e.g., in [8]-[11]. Recently, the denoising
problem in the wavelet domain has gained more attention in the
case of multichannel images. Indeed, the increasing need for
multicomponent images in several applications such as medical
imaging and remote sensing has motivated a great interest in
designing tractable denoising methods dedicated to this kind of
images. Componentwise processing can be performed for each
modality, but a joint denoising should be preferred in order
to exploit the cross-channel similarities in an efficient way
[12]. The problem of a joint estimation in the wavelet domain
has been formulated in [13]. More precisely, the use of joint
threshold estimators was investigated in two situations: over-
complete representations of a noisy image [14] and multiple
observations of the same image [13]. A scale-adaptive wavelet
thresholding was designed for multichannel images in the case
of an independent identically distributed (i.i.d.) Gaussian vector
noise whose components are independent and have the same
variance [15]. In a Bayesian framework, several prior models
have been considered such as multivariate Bernoulli-Gaussian
ones [16]. A generalized Gaussian distribution was also consid-
ered for modelling the marginal distribution of each subband
in each channel and a simple shrinkage was applied depending
on the local spectral activity [17]. A vector-based least-square
approach was also investigated in the wavelet domain [18].
Recently, the application of Stein’s principle [19]-[21] in the
multivariate case has motivated the design of a nonlinear esti-
mator in [22]. In this paper, links existing between the proposed
nonlinear estimator and Bayesian approaches were discussed.
In particular, the structure of the estimator was motivated by a
multivariate Bernoulli-Gaussian model reflecting the sparse-
ness of the wavelet representation as well as the statistical
dependencies existing between the different components. We
point out that the form of the estimator in [22] is not the same
as the one proposed in this paper. In particular, the estimator
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in [22] does not involve any thresholding operation. Moreover,
the estimator does not allow to take into account spatial depen-
dencies but only those existing between the multichannel data
at a given position.

In parallel to these works, the idea of performing a joint
spatial denoising of the coefficients, rather than using a con-
ventional term-by-term processing, has emerged in statistics.
This idea, stemming from an incentive for capturing statistical
dependences between spatial neighboring wavelet coefficients,
was first investigated for single component images in both
non-Bayesian and Bayesian cases [23], [24]. A successful ex-
tension was also carried out in the case of multichannel images
by considering hybrid (spectral and spatial) neighborhoods
[25].

In this paper, we aim at building a new estimator allowing
to take into account the various correlations existing in mul-
tichannel image data. This estimator also provides a unifying
framework for several denoising methods proposed in the liter-
ature. More precisely, our contributions are the following.

e The method applies to any vector-valued data embedded
in a multivariate Gaussian noise. As illustrated later on,
many examples of such multivariate contexts (intercom-
ponent, spatial, and interscale) can be found. They natu-
rally include multivariate denoising obtained with vectors
of samples sharing the same spatial position in different
channels.

* The estimator can be computed in any image representa-
tion domain. For instance, in addition to wavelet domains,
usually considered in conventional denoising methods,
we propose to exploit more general frame decompositions
such as the dual-tree wavelet transform [26], [27].

* The computation of the estimated value can be performed
with the help of various observations. Again, our method
includes most of the reported estimation methods acting
in that way. Furthermore, it offers a great flexibility in the
choice of these auxiliary data.

* The form of the proposed estimator is quite general. More
precisely, we focus on deriving thresholding estimators in-
cluding an exponent parameter and a linear part. Optimal
parameters are derived from Stein’s principle.

* The denoising approach allows to handle any covariance
matrix between the multichannel noise components.

Notwithstanding its generality, the proposed approach
remains tractable and compares quite favorably with
state-of-the-art methods. The paper is organized as follows. In
Section II, we present the relevant background and introduce
notations for a general formulation of the estimator, based
on the concept of Reference Observation Vector (ROV). In
Section III, we describe the proposed multivariate nonlinear
estimator. In Section IV, we give the specific form taken by
this new estimator for multichannel images decomposed by
a wavelet transform or an M -band dual-tree wavelet trans-
form. In Section V, experimental results are given for remote
sensing images showing that the proposed estimator outper-
forms existing ones and some concluding remarks are drawn in
Section VI.

Throughout this paper, the following notations will be
used: let M be an integer greater than or equal to 2,
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Ny = {0,...,M — 1} and N}, = {1,...,M — 1}; Z,
R and R, are the sets of integers, reals and positive reals;
[.] denotes rounding towards the immediate upper integer.
Besides, Fa denotes the Fourier transform of a function a,
(6m)mez is the Kronecker sequence (equal to 1 if = 0 and 0
otherwise), (f)4+ = fif f > 0 and O otherwise, and 1{A} =1
if condition A is true and O otherwise.

II. BACKGROUND

A. General Formulation of the Multichannel Estimator

In multisensor imaging, B vectors of observed data samples
(rM(k))ker, - - - » (1) (k))kek, are provided where B is the
number of effective sensors and K is a set of spatial indexes
(K C Z?). Generally, these data correspond to noisy realiza-
tions of B unknown signals (s (k))ker, - - - » (58 (k))kek,
respectively. Subsequently, our task will consist in devising
methods to reduce the noise present in the observations. Two
alternatives can be envisaged in this context. On the one

hand, a monochannel approach builds an estimator g‘\(b)(k)
of s® (k) only from the observations (r® (k))xex, for
each channel b € {1,...,B}. On the other hand, a multi-
variate technique attempts to estimate s(b)(k) by accounting
not only for the individual data set {r(®)(k)}yex, but also
for the remaining ones {r™")(k)}xex, ..., {r® (k) kek,
{rO*D () bkerc, - - {7 (k) e

Thus, one of the simplest relevant denoising approach con-

sists in calculating the estimated value s (k) of s(k) as

10 = £ (+O(x)) m

where f is a scalar function defined on the real line. For in-
stance, a shrinkage function can be used, possibly involving
some threshold value. Such a technique is commonly used
in regression, when outliers have to be removed in order to
improve the representativity of the fit [28]. Although () (k)
does not necessarily depend on other observed samples, for
structured signal or image analysis, neighboring samples often
present some correlations. Consequently, an improvement can

NC
s

be expected if Q(b)(k) is calculated with the help of a subset
Rizg(k) of observed sample locations. Average or median
filtering [29, p. 243-245] are examples where the estimated
sample depends on its neighborhood. As a result, a more

general estimation rule is

AlD) )
s (k) =f <(r<b>(k ))k,eR(-b)(k) .

With underlying Markovian assumptions, the context set
{T(b)(kl)}k’eR(b)(k) can be restricted to a limited number of

(@)

values around the sample location k. These values can be
gathered in a vector ¥*)(k) which will be designated as the
ROV. We have then

A®)

S =1 (590). ©

The multivariate case can also be described by such a formula
if we allow the ROV to contain additional samples from the re-
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maining channels in order to exploit the intercomponent statis-
tical dependencies.

Another degree of freedom lies in the choice of a suitable do-
main for data representation. While virtually any transform can
be chosen, special attention has been paid to multiscale trans-
forms. For example, if a decomposition onto an M -band wavelet
basis (M > 2) [30] is performed, the observed images are
represented by coefficients r](br)n(k) defined at resolution level
j > 1 and subband index m € N3, and the corresponding
ROV will be denoted fgbr)n(k) Since the noise is usually less
correlated than the data, the DWT is applied in order to pro-
vide a sparser representation of the data of interest, before fur-

ther analysis [3], [4]. The goal becomes to generate estimates

(®)
is\]-,m (k) of the unknown wavelet coefficients s® (k) of the

J,m
original images

8 ) = £ (50) @

Then, the inverse DWT is applied to the estimated coefficients

in order to reconstruct the estimated signal §<b)(k) in the spa-
tial domain. In the literature concerning denoising, two key is-
sues have been addressed. The first one lies in the definition of
the ROV. The second one concerns the choice of an appropriate
function f or, in other words, a suitable expression of the esti-
mator. In the next subsection, we give a brief overview of the
main ROVs proposed until now.

B. Reported ROVs in the DWT Domain

Popular componentwise methods operating in the DWT do-
main are Visushrink [5] and SUREshrink [7]. They both employ
a very basic ROV reduced to a scalar value:

Ty

(k) = i (k). 5)
Similarly to what can be done in the spatial domain, the wavelet
coefficients can also be processed by block rather than individ-
ually, again in a mono-channel way [23], [24], [31]-[33]. The
main motivation for this technique is to exploit the spatial sim-
ilarities between neighboring coefficients in a given subband.
The introduction of d — 1 spatial neighbors k1, ..., ky_1 of the
current sample indexed by k in the ROV allows to take into ac-
count the spatial dependencies

§
F0 1) = [0, k), ke )] - ©

For higher dimensional data, the ROV may also consist of co-
efficients sharing similar orientations, possibly within different
scales [34]. Another generalization of the scalar case takes into
account the interscale similarities between the current coeffi-
cient and the homologous ones defined at other scales. Based
on empirical observations in image compression [35], it has
been proposed to use the current coefficient ancestors at coarser
scales j + 1,7 + 2,..., 7m eventually up to the coarsest level
J [36]-[38]: the ROV FE}'En(k) thus includes the corresponding
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Jm — J+1 coefficients at location k, in subband m, at resolution
level j.

In the case of multicomponent data, additional samples bor-
rowed from the different channels can be included in the ROVs,
as shown in [34], [39] for color image as well as for multispec-
tral image denoising. Basically, the intercomponent correlations
can be taken into account through the following ROV [22]:

T
) (k) = [7«](.},;(1{), . ,rj.i{(k)] . %
Such an ROV includes all the coefficients of all channels at the
same spatial location, in the same subband m and at the same
resolution level j. In [25], a more sophisticated multicomponent
ROV ngl)n(k) has been defined which combines both spatial and
multichannel neighbors. As particular cases, such an ROV en-
compasses the ROV in (7) and, also the ROV in (6). In addition,
the ROV may include coefficients from different subbands.

A final potential extension of the ROVs is related to the choice
of the transform. Indeed, it has been long observed that a de-
composition onto a wavelet basis suffers from a lack of shift-in-
variance as well as a poor directionality, resulting in denoising
artifacts at low signal to noise ratios. A simple way for alle-
viating these problems is to use a frame decomposition built
from a union of wavelet bases. In particular, a number of papers
[40]-[42] have demonstrated significant improvements in scalar
shrinkage when resorting to a translation-invariant wavelet rep-
resentation. The latter can be viewed as a decomposition onto
a union of shifted versions of a unique wavelet basis. M -band
dual-tree wavelet decompositions [27] constitute another ex-
ample of a union of 2 (respectively, 4) wavelet bases in the
real (respectively, complex) case. The corresponding mother
wavelets are then derived from the first one by Hilbert trans-
forms, which results in an improved directional analysis. For
such frame decompositions, one can extend the notion of ROV
to include samples produced by the different wavelet basis de-
compositions operating in parallel. These facts will be further
developed to motivate the application of the general estimator
proposed in this paper to an M -band dual-tree wavelet frame
[27].

C. Unifying Framework for Shrinkage Functions

In the aforementioned works, the estimation is often per-
formed by shrinkage, so exploiting the sparseness of the
representation. The most well-known method was proposed
in the pioneering works of Donoho and Johnstone [5]. The
estimating function f is then given by

f (rsbl)n(k)) = sign (’l”](br)n(k)) max{

| =20} @®)

for a soft thresholding with threshold value A > 0, where sign(-)
is the signum function. Equivalently, by using the ROV in (5),
the estimating function can be expressed as

9 (k)| -
(- (1

") k) ‘



3858

Some works [43] have focused on the improvement of the scalar
shrinkage rule, yielding for instance smoother functions such as
the garrote shrinkage based on [44], which is defined as

(10)

+

Several authors have proposed vector-like generalizations to the
scalar shrinkage. Cai and Silverman [23], have proposed a block
estimator which takes into account the energy of the neighboring
coefficients in each subband, as expressed in (6). This estimator
dominates the maximum likelihood estimator when the block
size is greater than 2. This method, named “NeighBlock,” con-
sists of applying the following shrinkage rule:

Ab)

im ( H o (k)

7 <k>H .

Y

+

where A > 0, d is the number of components in the ROV,
(b)
( ) (k) is a subpart of the ROV, §j7m

,1M

(k) is the associated

norm of R? and 2 denotes the noise variance. Such a function
is clearly reminiscent of the scalar garrote shrinkage defined in
(10). Based on an asymptotic minimax study, Cai and Silverman
suggested appropriate values for A and d. They considered both
overlapping and nonoverlapping variants of this approach. In
particular, the so-called “NeighCoeff” method corresponds to

Alb .
the case when's; . (k) reduces to a scalar estimate. Then, the
corresponding estimating function is

f(ﬁﬁikﬂ R H "0 (k). (12)

=)
CECI

In the meantime, Sendur and Selesnick [45] introduced
a Bayesian approach allowing to model interscale de-
pendencies between two consecutive levels. These au-
thors consequently formulated the problem in the 2-band
wavelet domain. In their approach, the ROV is given by
£, (0) = [0, k), 1%, L (Tk/2D]T, 7% a([/2]) being
the “parent” of rj(»f’m( ) (at the next coarser resolution). By con-
sidering as a prior model the non-Gaussian bivariate probability
density function

p (5000952 (M))

2

xexp | —

(®) k
ol ([5])
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the following maximum a posteriori (MAP) estimator was
derived:

" r" (k) (14

\ mm(k >H

where the noise variance is again denoted by o2

More recently, in the context of signal restoration problems,
Combettes and Wajs [46] have studied the properties of prox-
imity operators corresponding to the solutions of some convex
regularization problems. In particular, an interpretation of one
of their results is the following. Let us adopt a Bayesian formu-
lation by assuming that the vector fg-f’l)n(k) is anoisy observation

£ (Ft0) =

+

of the vector s( ) .. (k) of multichannel coefficients at location k,
embedded in whlte Gaussian noise with variance 2. Further
assume that the vectors sgbzn(k) are independent of the noise,
mutually independent and have a prior distribution proportional

to exp(—Al| - ||) with A > 0. The MAP estimation of sgbl)n is
found by solving the optimization problem:
= 10l
min )\||u||—|— Hu—r] m(k)H . (15)
GRH

It is shown in [46] that the minimizer of the MAP criterion is
) 32
.00 = %o

f(_b) (k) H

J,m

A0

8jm=

(b
) (k).

+

(16)

The three previous block-thresholding estimators have been
derived from different perspectives and they have also been ap-
plied in different ways. However, it is p0551ble to describe them
through a general shrinkage factor m(||r i m|| ), where

7MU)Z<T;A>+

and § > 0 and A > 0 take specific values in each of the
aforementioned block estimators. We also remark that this gen-
eralized shrinkage obviously encompasses the soft and garrote
thresholdings provided in (9) and (10).

V1 € R+./

7)

III. PROPOSED NONLINEAR ESTIMATOR

A. Notations

We will now propose a more general adaptive estimator that
can be applied in any representation domain. We will therefore
drop the indices j and m and we will consider the general sit-
uation where an observation sequence (T(k))xez2 of d-dimen-
sional real-valued vectors (d € N, d > 1) is defined as

vk e 72,  t(k)=75(k)+n(k) (18)
where (n(k))xezz is aN(O,I‘(E)) noise and (S(k))xez2 is an
ii.d. second-order random sequence which is independent of
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(0(K))xez>. We will assume that the covariance matrix I™ is
invertible. These random vectors are decomposed as

) =[] o

where r(k), s(k), and n(k) are scalar random variables. We
aim at estimating the first component s(k) of the vector s(k)
using an observation sequence (T(k))kex where K is a finite
subset of Z2. We recall that, although (18) does not introduce
an explicit dependence between s(k) and the vector £(k) of the
last d — 1 components of T(k), such a statistical dependence
may exist, due to the dependence between the components of

S(k) themselves. The estimated sequence will be denoted by
A

(5 (K))xer-

B. Form of the Adaptive Estimator

In order to gain more flexibility in the denoising procedure,
the following generalized form of shrinkage estimate will be
considered:

A = I} T

50k) = m(IE00)117) @ (k) (20)
where the function 7,(+) is given by (17) with A > 0, 5 > 0
and q € R?. The vector q corresponds to a linear parameter.
We notice, in particular, that if the threshold value A is set
to zero, the considered estimator reduces to fs\(k) = q'r(k).
This shows that linear estimators constitute a subset of the
considered class of estimators. In addition, by an appropriate
choice of the vector q, estimators consisting of a preliminary
decorrelation of the data followed by a thresholding step also
appear as special cases of the proposed estimator. Note that,
in conventional multichannel data analysis, it is customary
to decorrelate the data before processing. The most common
examples are fixed channel conversions (like those from stereo
to mono in sound processing or from Red Green Blue (RGB)
to luminance/chrominance components in color image or video
processing). When the data modalities are less standardized
(for instance in satellite imaging), adaptive methods such as the
Karhunen—Loeve transform or independent component analysis
(ICA) [47] can be used. The latter adaptive transforms can also
be performed in the wavelet domain, e.g., in each subband.

Furthermore, in order to limit the computational complexity
in the implementation of the estimator, it can be useful to con-
strain the vector q to belong to some vector subspace of reduced
dimension d’ < d. Let P € R?*4" be the matrix whose column
vectors form a basis of this subspace. We have then q = Pa
where a € R . As a simple example, by choosing

I(l’
P =
K
where I denotes the identity matrix of size d’ x d’, we see that
we only introduce in the estimator a linear combination of the
first d’ components of the vector T(k). In summary, the proposed

form of the estimator is parameterized by A, 5 and a for a given
choice of P.
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Our objective is to find the optimal parameters that minimize
the quadratic risk defined as R(\, 5,a) = E[|s(k)— A(k)|2],
for a predefined value of P. It is easy to show that the risk reads

R\, f,a) =E [ s(k)— Q(k)ﬂ

—€ [1s0"] + € | [m(Ix001") a P10
— 26 [m(IF0)]1”) aTPTE() (k) -

The minimization of the risk is not obvious for any observation
model. Indeed, since the s(k) are unknown, it seems impossible
to express the rightmost term E[n, (||t(k)||*)a™ P Tr(k)s(k)].
However, in the case of a Gaussian noise, it is possible to apply
an extension of Stein’s principle [19] for deriving an explicit
expression. In the next subsection, we will state and prove such
an extended Stein’s formula.

2n

C. Stein’s Formula

Proposition 1: Let f : RY — R be a continuous, almost
everywhere differentiable function such that

(t-)T (1) (t-0)

d . _
VO eR 7||t||h—1>1-1|-oof(t) exp 5 =0
(22)
E[|f(f(k))|2] <400 and E[Hagg;(g))m <400, (23)
Then
— T
£ 17 (109) s(19] = E 1f (0 (1] € | TS0 ] e
(24)

Proof: Let T : R? — R? be a continuous, almost every-
where differentiable function such that

(t-0) (1) (t-0)

d : —
VO eR 7||t|\151-1|-ooT(t)eXp - 5 =0
(25)
2 9T (r(k))
E[||T(r(k))|| } <400 and E[HW J <400 (26)

where || - || is the Frobenius norm. In this multivariate context,
Stein’s principle [19] can be expressed as

E [T (r(k))s" (k)] = E[T (£(k)) T (k)] )
—E [aan(Tiﬁ)))} r™. (7

Equation (24) follows by choosing T : t — [f(t),0,...,0]"
and focusing on the top-left element of matrix
E[T(F(k)s" (k). =

D. Risk Expression

We define the function f : u +— ny(|[ul|®)a™PTu. It is
easy to check that this function f satisfies the conditions of



3860

Proposition 1. Consequently, the last term can be calculated
thanks to (24). This yields

= T
E[s(k)f (t(k))] = E[r(k)f(T(k))] - E [6{9;;(8;))} p®n)
(28)

where T*™) = E[m(k)n(k)]. We then have

0F (1K) _ v om(|ir)])

E(k) or(K)
+m(|l o)) 2
= F )Hﬁﬂ 1{IlE)1” > 2}
e G9pa 4 s (Jr001°) P

=m(IF)|") Pa+ A(k)E" (l)Pa  (29)

where £(k) = 1{||F(k)||® > A} r(k)/ ||F(k)||?*2. This leads
to the following expression of the risk:

R\, 8,2) = E [Jr(k) = £ (£())°] + 2€ [ (1IER)]7) ]
xa  PTT®™ £ 2)aTPTE [¢(k)T (k)] T™™ — 62 (30)
where 02 = E[|n(k)|?].

We will now look for parameters A, § and a that minimize
the risk expression (30) for a given choice of P.

E. Determination of the Parameter a

We first aim at calculating the value of a that minimizes
the risk (30). By noticing that the risk is a quadratic convex
function of a, the minimization can be performed by differ-
entiating with regard to a and then finding a*(\, 3) such that
OR/0a(\, B,a*(A, ) = 0. It readily follows that

€1y

F. Determination of the Parameters \ and 3

Starting from (30), the risk R(A, 3, a) can be re-expressed as
R(X, B,a) = E[px,g,a(k)] where

P p.a(k) = az(k)A? + a1 (k)A + ag(k) (32)
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and

ao(k)=r2(k) — o2 + 1 {||f(k)||ﬂ >)\} a'P’
X (21‘@") + (a"PTE(k) — 2r(k)) T(k))

ar(k)=2a'PT <(7”(k) - aTPT_f(k»ﬁf(k) _pEn)
(k)|
- FT(k)AT® o
-I-/J'r(k)W) ]l{||r(k)|| >)\}
a0 =1 {0’ >} @ ETT0)
(k) =1 {JIE(w))|”> A} i

In practice, under standard mixing assumptions for (n(k))gez2
and (S(k))rezz [48], R(\, 3,a) can be estimated via an em-
A

pirical average R (), 3,a) computed over IK, provided that the
data length K = card(K) is large enough. Following a proce-
dure similar to the search implemented for the SUREshrink esti-
mator, we will subsequently determine optimal values of A\ and
[ for this consistent risk estimate. More precisely, the norms of
the ROVs (||T(k)||) ke are first sorted in descending order, so

that ||T(k )|| > |It(ko)|| > ... > |IT(kk)||- To study the varia-
tions of R (A, B,a) w.r.t. A, we consider the case when \ € T,
withig € {1,...,K + 1} and
[||F(k1)||‘3,oo) : ifig =1
Ly = § [IF i)l IE (ki) 5 if o € {2, K
[0, I (ki) 11”) ifig = K + 1.
(33)
On the interval I;,, the risk estimate then takes the following
form!:
10 1 K
()\ 3, a) (Z PaB,a(ki) + Z /L\,ﬁ,a(ki)> 34
i=io
i0—1 19—1
_ 2 .
1 </\ SRAMES) SRAC
io—1 K
S ot + 30
i=1 i=ig

—(K+1- 7;0)02> : (35)

In other words, ?% (A, B,a) is a piecewise second-order poly-
nomial function of A. Assume now that iy € {2,..., K}. For
given values of 3 and a, the minimum over R of the polynomial
in (35) is reached at

22? fcw( i)

— K —
= Zi:1<+1' =0.

Xio (B, ) = (36)

I'We adopt here the convention Z?;l
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The minimum over [||t(k;,)||?, [|F(ki,—1)||’] of the estimated
risk is therefore given by

[F (kip )17, if Xig (B,2) > ||r( o)l
AL (B,a) = € Xy (B, a), if \; ,(B,a) €
IIE (kio)[17, i X, (B, )<||r(ki0)||ﬁ'

(37)
The minimizers A} (3,a) and A%, (8, a) of the estimated risk
over I; and I 1 can be found in a similar way. The global min-
imizer A*(3, a) of the estimated risk is subsequently computed
as

X*(8,a) = arg RO\ (B,a),5.2) . (38)

‘ min
(ATO (B,a)1<ig<k+1

To determine the optimal value 3*(a) of the exponent 3, we
can then proceed to an exhaustive search over a set V of possible
values for this parameter by choosing

A
*(a) = in R(\
p*(a) arg min (

“(B,a),8,a). (39)

In our experiments, it was observed that a restricted set of a few
search values is sufficient to get good results.

G. lIterative Optimization Algorithm

The optimal expression of the vector a is derived in a closed
form in Section III-E as a function of the parameters A and §. In
this way, the optimization problem simply reduces to the deter-
mination of the latter two parameters. On the other hand, given
a, a procedure for determining the optimal values of A and [ is
described in Section III-F. In order to get optimized values of
the estimator parameters, we therefore propose to apply the fol-
lowing iterative optimization approach.

1) Initialization: Fix P and V. Set the iteration number p = 1

and a(® = [1,0,...,0]T € RY.
2) Iteration p:
a) set P) = p*(alP=V) and A®) = \*(pP), alP—1))
as described in Section III-F;
b) seta® = a*(A®) 3(®)) using (31) where the expec-
tations are replaced by sample estimates.
3) Setp « p+ 1 and goto Step 2 until convergence.
4) Return the optimized values (A, 3(P), a(P)) of the pa-
rameters.
We point out that, although we were not able to prove the con-
vergence of the optimized parameters, the generated sequence

A
(R(A®), 3P) a®))) is a decreasing convergent sequence. This
means that the generated parameters at each iteration of the al-
gorithm allow to decrease the risk value.

IV. MULTICOMPONENT WAVELET DENOISING

Our objective here is to apply the nonlinear estimator devel-
oped in the previous section to noise reduction in degraded mul-
ticomponent images by considering wavelet-based approaches.
The original multichannel image is composed of B € N* com-
ponents s() of size I x L, with b € {1,..., B}. Each image
component s() is corrupted by an additive noise n(*), which is
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assumed independent of the images of interest. Consequently,
we obtain the following noisy observation field 7(*) defined by

vkeK, r®k)=s®k)+n® (k) (40)
where K = {1,..., L}?. Following a multivariate approach, we
define

s(k) 2 [sD(k),...,s® (k)]
Vk € K, n(k) 2 [nu)(k) LB K] @D
r(k) 2 [rO(K),...,r B K)] " .

Obviously, the observation model (40) can be rewritten as Vk €
K, r(k) = s(k) + n(k). In many optical systems, the noise
stems from a combination of photonic and electronic noises cu-
mulated with quantization errors. Subsequently, we will assume
that the noise vector process n is zero-mean i.i.d. Gaussian with
covariance matrix T Tn [1] and [2], this was shown to con-
stitute a realistic assumption for satellite systems. It is worth
noticing that a non diagonal matrix '™ indicates that intercom-
ponent correlations exist between co-located noise samples.

Hereafter, we will use two decompositions. The first one
consists in a critically decimated M-band wavelet transform
whereas the second one, corresponds to an M -band dual-tree
wavelet decomposition we recently proposed [27], which
permits a directional analysis of images.

A. M-Band Wavelet Basis Estimation

1) Model: We first consider an M -band orthonormal discrete
wavelet transform (DWT) [30] over .J resolution levels applied,
for each channel b, to the observation field r(%). This decom-
position produces M? — 1 wavelet subband sequences r](b
m € N3,\{(0,0)}, each of size L; x L; (where L; = L/MJ)2
at every resolution level j and an addltlonal approximation se-
quence r% of size Ly x Lj, at resolution level .J.

On the one hand, the linearity of the DWT yields (see
Fig. 1): Vk € K]’, I‘j’m(k) = Sj’m(k) + l’lj7m(k) where
Kj = {1./ . ,Lj}z and

$jm(k) 2 [sg.lm(k), L s;fg(m] !

On the other hand, the orthonormality of the DWT preserves the
spatial whiteness of n; ,,. More specifically, it is easily shown
that the latter field is an i.i.d. A/(O, I‘(“)) random vector process.

A final required assumption is that the random vectors
(sj,m(k))rex are identically distributed for any given value of
(j. ).

2) Associated Estimator: As described in Section III, our es-
timator can be directly applied to the M -band DWT coefficients.
As in conventional approaches, the approximation coefficients

2For simplicity, L is assumed to be divisible by M 7.
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Fig. 1. Considered models in the wavelet transform domain (left) and in the dual-tree transform domain (right).
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Fig. 2. Pair of analysis/synthesis M -band para-unitary filter banks.

(i.e., j = J and m = (0, 0)) are kept untouched. The parame-
ters Aj m, #j,m and q; m can be determined adaptively, for every
subband (j, m) and every component b. In this case, the ROV
can be scalar, spatial, intercomponent or combined spatial/inter-
component. More detailed examples will be given in Section V.

B. M-Band Dual-Tree Wavelet Frame Estimation

1) A Brief Overview of the Decomposition: The M -band
real dual-tree transform (DTT) consists in performing two
separable M-band orthonormal wavelet decompositions in
parallel as illustrated by Fig. 2. The one-dimensional wavelets
(’l/}m)meN;M corresponding to the primal tree (upper branch)

are assumed known and the “dual tree” ones ('zpr}i)mew (used
in the lower branch) are built so that they define Hilbert pairs
with the primal ones. This reads in the frequency domain:
vm € N4, (Fyl)(w) = —sign(w)(Fipm)(w). Details of
construction are given in [27] and the global scheme of the
decomposition is shown in Fig. 3. An important point is that the
dual-tree decomposition includes a postprocessing, consisting
of a linear isometric combination of the primal/dual subbands
(see Fig. 3). This postprocessing constitutes an essential step for
obtaining a directional analysis. Finally, two sets of coefficients
(primal and dual ones) are obtained, which means that this
representation involves a limited redundancy of a factor two.

2) Model: Applying this decomposition to a multichannel
image having B components and using similar notations to
Section IV-A-1), we obtain the following coefficients for the
original data, the observed ones and the noise, respectively:

* before postprocessing:  (sjm(k), s}y (K)), (rjm(k),
£ (k) (0,m(k), njl, (K));
+ after postprocessing: (vj,m(k),vgm(k)),(ujym(k),

' (1)), (W) (), W (K)).
Note that a postprocessing is not applied to all subbands
(see [27]) as the Hilbert condition is only verified by mother
wavelets. As a consequence, the linear isometric combination
is not performed for subbands processed by low pass filters.
More precisely, the postprocessing consists of the following
unitary transform of the detail coefficients: for all m € N%2,

1
Vk € Kj, wjm(k) = 7 (njm(k) + 0}, (k)
Witm(k) = . (nj.m(k) — 0, (k). 42)

V2
Similar relations hold for the original and observed data. Fur-

thermore, invoking the linearity property of the transform, these
coefficients are related by [see Fig. 1 (right)]:

Vk € Kj, 1jm(k) =sjm(k) +n;m(k)
r (k) =55 (k) + 0, (k)
W) m(k) =v;m(k) + w;m(k)
ujl (k) = Vi, (k) + wi,, (k) (43)

3) Noise Statistical Properties: In our recent work [49], [50],
a detailed analysis of the noise statistical properties after such
a dual tree decomposition has been performed. In the sequel,
some of the main results we obtained are briefly summarized.
Let us recall the definition of the deterministic cross-corre-
lation function between the primal and dual wavelets: for all
(m,m') € N%,,

VT €R, Yimm(T) = / Yo ()Y, (2 — T)dz.  (44)

We have obtained the following expressions for the covariance
fields: forall j € Z, m = (my,m2) € N3,, m’ = (m}, m}) €
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Fig. 3. Dual-tree 2-D decomposition.

N3, k = (k1,k2) € K; and k' = (k{,k}) € K;, with the
index difference A,, = p; — p, i € {1,2}:

It can be further noticed that, for m # 0, the random vectors
n;j m (k) and n¥, (k) at a given location k are mutually uncor-
related.

After postprocessing, the covariances of the transformed
noise coefficient fields can be easily deduced from (42): for all
(m,m’) € Nj7 and (k, k') € K3,

E [ () (e () ] = E [0 0 ) (0 (K1)
+E[n]m(k (0¥ ( ))T} (45)

€ [0 06) (W3 () = E 7m0 (270 ()]
~E[1m(10) (0} () "] 46)

E[wj,m(k) (w]Hm,(k’))T]: 0.
In summary, noise coefficients are intertree correlated before
the post-transform whereas after the post-transform, they are
spatially correlated. This constitutes an important consequence
of the postprocessing stage.

4) Associated Estimator: In the M-band DTT case, the
primal and dual coefficients are both estimated. For each com-

ponent b € {1,..., B}, the estimator reads: for the subbands
which are not linearly combined (m ¢ N},),

(®) Bim T
Sim (k) =m0, ( )(qg’?n) ) (k) (48)

s 0 =g ([ E00)| ) ()

") (k)

(k)

J,m

(49)

and, for the combined subbands (m € NX,),

Ab) B, -
Vsam () =) ( (k) ) () 0
(50
/\H(b) _ ’3?5{1:) B
i () =T (H (=00 | ) (i) wi o
(5D

where r?(b)(k) and r;{fn)( ) (respectively, ug r)n(k) and
ﬁ?(b (k)) are the ROVs for the primal and dual coefficients
before (respectively, after) post- transformat1on Similarly to the
DWT case, (Ajm; Bj,m: Qj,m) and (AL, B2 ql,,) can be
adaptively determined by minimizing the quadratlc risk over the
frame coefficients for every subband (j, m) and every compo-
nent b in each tree. Furthermore, the approximation coefficients
are also kept untouched. The denoised multichannel images
are then obtained from the estimated wavelet coefficients by
inverting the DTT using the optimal reconstruction developed
in [27]. In this case, a great flexibility exists in the choice of
the ROV since the latter can be scalar, spatial, intercomponent,
intertree or combined spatial/intercomponent/intertree as will
be illustrated in the next section.
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TABLE I
BRIEF DESCRIPTION OF THE TESTED METHODS
[ Acronym | Description | Ref. [| Acronym [ Description | Ref. |

Biv. Bivariate shrinkage method [45] Multivariate methods
BLS-GSM | Bayesian Least Squares (BLS) [34] ProbShrink | Multivariate method for 3-band images using [39]

Gaussian Scale Mixture (GSM) (.x.) critically decimated DWT and taking into

using critically decimated DWT account a (. X .) neighborhood in each channel
BLS-GSM | BLS-GSM using critically [34] ProbShrink | Multivariate method for 3-band images [39]
+ parent decimated DWT and taking into red. (. X .) | using undecimated DWT and taking into

account the parent coefficient account a (. X .) neighborhood in each channel
BLS-GSM | BLS-GSM using a full [34] Surevect Estimator based on an extended SURE [22]
red. steerable pyramid approach using a critically decimated DWT

(redundant transform)
Curvelets Block estimator using curvelet [51]

transform: 7.5 times redundant

V. NUMERICAL RESULTS

We now provide numerical examples showing the efficiency
of the proposed method. In our simulations, we consider
different multichannel remote sensing images. For the sake
of clarity, we only provide experimental results concerning
two multispectral images. The first one designated as Tunis
corresponds to a part of a SPOT3 scene depicting a urban area
of the city of Tunis (B = 3). The second one named Trento
is a Landsat Thematic Mapper image having initially seven
channels. The thermal component (the sixth component) has
been discarded since it is not similar to the remaining ones.
Hence, the test image Trento is a B = 6 component image.
In order to obtain reliable results from a statistical viewpoint,
Monte Carlo simulations have been conducted. According to
our experiments, averaging the mean-square error over five
noise realizations is sufficient to obtain consistent quantitative
evaluations.

In the following, we discuss several topics: in particular, we
compare our method with other recently proposed estimators,
possibly having a multivariate structure. Then, we consider dif-
ferent preprocessings that can be performed on the multichannel
data before applying the estimator, thus expecting improved re-
sults. The ROV being defined in a generic way in the previous
section, we also study the influence of specific choices of this
ROV on the denoising performance as well as the influence of
the wavelet choice (considering various M -band filter banks).
When different decompositions are performed, we set the max-
imum decomposition level so that the size of the approximation
fields remain the same. Consequently, we decompose the im-
ages over two levels for a 4-band filter bank structure and four
levels for a dyadic one.

If 0(® denotes the standard deviation of the clean multi-
channel component s(®) (of size L x L) we define the initial
and the final signal to noise ratios SNRi(:gtial and, SNRggal in
the bth channel as

(b))2 12
SNR®) 2101 (e®) L2
initial 0810 “S(b) _ ’I”(b) ||2
®)2 2
SNRY)  21010g;, &2 NG
® _ Ab)
S S

Then, all the B channel contributions are averaged into global
values of the initial and final signal to noise ratio SNR;y;tia1 and,
SI\IRﬁnaL

A. Comparison With Existing Methods

We aim in this section at comparing the proposed approach
with several existing denoising methods which are briefly de-
scribed in Table I. Tests are performed on a 512 x 512 SPOT3
image of Tunis city (B = 3) (as some multivariate methods are
limited to 3-band images) corrupted by an additive zero-mean
white Gaussian noise with covariance matrix an) = o2 1p,
where I denotes the identity matrix of size B X B.

We first study techniques that use orthogonal wavelet trans-
forms. We employ Daubechies wavelets of order 4 in all the fol-
lowing estimators:

1) the bivariate shrinkage, which takes into account interscale
dependencies, the last level being processed by inverting
children and parent role [45];

2) the BLS-GSM method developed in [34] including or not
the parent neighborhood and considering a 3 x 3 spatial
neighborhood3;

3) the ProbShrink estimator [39] for multivariate data with a
3 x 3 spatial neighborhood (in each channel)#;

4) the Surevect estimator [22], which only takes into account
multicomponent statistical dependencies;

5) the proposed estimator where the set of values taken by
ﬂj(bl)n is V = {0.5,1,1.5,2}, the ROV is represented in

®)

J,m

Fig. 5(b). A subspace constraint is added on the vector q

so that (ngzrl)—rf§br)n(k) reduces to a linear combination of
the multichannel data at the considered location and the
four spatial nearest neighbors.

The obtained results are provided in Table II (the initial SNRs
may be different in each channel although the noise variance is
fixed). For the first three methods, denoising has been performed
for each component of the multichannel data. For orthogonal
wavelets, ProbShrink leads to better results when it is associ-
ated to a spatial neighborhood than when considering only the
pixel value to be estimated. It performs quite similarly to the bi-
variate shrinkage. The BLS-GSM estimator outperforms these

3We use the toolbox available from Portilla’s website http://www.io.csic.es/
PagsPers/JPortilla/.

4We use the toolbox available from Pizurica’s website http://www.telin.
rug.ac.be/~sanja/.
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TABLE II
DENOISING RESULTS (AVERAGE VALUES COMPUTED OVER 3 CHANNELS) ON TUNIS IMAGE USING NONREDUNDANT
ORTHOGONAL TRANSFORMS (SEE TABLE I) WITH DAUBECHIES WAVELETS OF ORDER 4 (LENGTH 8)

o2 SNR ¢ Biv ProbShrink | BLS-GSM | BLS-GSM | Surevect | Proposed
B x3) + parent
650.3 5.081 11.85 11.86 12.05 12.14 13.08 13.41
410.3 7.081 12.89 12.84 13.11 13.21 14.12 14.51
258.9 9.081 13.99 13.91 14.26 14.36 15.24 15.69
163.3 11.08 15.19 15.08 15.49 15.60 16.43 16.95
103.1 13.08 16.49 16.37 16.81 16.93 17.70 18.27
65.03 15.08 17.88 17.54 18.22 18.35 19.04 19.64
TABLE III

DENOISING RESULTS (AVERAGE VALUES COMPUTED OVER THREE CHANNELS) ON TUNIS IMAGE USING
REDUNDANT TRANSFORMS (SEE TABLE I) WITH DAUBECHIES WAVELETS OF ORDER 4 (LENGTH 8)

o2 SNRini¢ Curvelets | BLS-GSM red | ProbShrink red | ProbShrink red | Surevect | Proposed

+ parent B3 x3) (1x1) DTT DTT
650.3 5.081 11.91 12.92 13.00 13.33 13.54 13.71
410.3 7.081 12.94 14.00 14.04 14.38 14.59 14.80
258.9 9.081 14.04 15.15 15.13 15.50 15.70 15.97
1633 | 11.08 1517 16.38 16.28 16.68 16.87 17.21
103.1 | 13.08 16.33 17.68 17.51 17.92 18.11 18.52
65.03 | 15.08 17.56 19.04 18.76 19.20 19.41 19.88

two methods providing a gain of approximately 0.2 dB (up to
0.3 dB by including the parent coefficient in the neighborhood).
Nevertheless, the Surevect estimator brings more significant im-
provements and it can be observed that our method leads to even
better numerical results whatever the initial noise level is. The
new structure of the estimator coupled with a spatial and spec-
tral block processing may explain such an improvement. Fur-
thermore, the gain increases as the initial SNR increases, which
is interesting in satellite imaging where the noise is often of low
intensity. To be fair, we would like to mention that, although bi-
variate shrinkage, ProbShrink and BLS-GSM were designed for
monochannel image denoising, extensions of these methods to
the multivariate case could probably be envisaged.

In the monochannel case, it has been reported that the use
of redundant transforms often brings noticeable improvements
in denoising [51]. We subsequently compare methods that have
been proved to be very efficient when combined with a redun-
dant analysis:

1) the curveletdenoising [51] using a curvelet frame with a re-
dundancy approximatively equal to 7.5 and a block thresh-
olding?;

2) the BLS-GSM method using steerable pyramids with 8 ori-
entations, including the parent neighborhood and a 3 x 3
spatial neighborhood as described in [34];

3) the ProbShrink estimator for multivariate data using undec-
imated wavelet transform [39] (with Daubechies wavelets
of length 8) and taking into account a 3 x 3 or no spatial
neighborhood;

4) the Surevect estimator [22], extended to DTT (with
Daubechies wavelets of length 8);

5) the proposed estimator using a DTT where V
{0.5,1,1.5,2}, the ROV is represented in Fig. 6(b).
The vector q]-{’l)n (respectively, qiﬁ?) is such that it intro-

SWe employ the Curvelab 2.0 toolbox which can be downloaded from
http://www.curvelet.org.

duces a linear combination of the multichannel data in the
primal (respectively, dual) tree at the considered location
and the four spatial nearest neighbors.

It is worth pointing out that the same noisy images as used
in the non redundant case have been processed by the redun-
dant transforms. As shown in Table III, curvelets do not seem
really appropriate in this multichannel context in spite of their
promising results in the monochannel one. ProbShrink and
BLS-GSM methods are very efficient in the redundant case
and ProbShrink shows its superiority when using an intercom-
ponent neighborhood. The methods using a DTT outperform
the existing ones in all the cases. We point out that the DTT
has a limited redundancy of a factor 2 compared with the other
considered redundant decompositions. It can be noticed that
our method provides better results than Surevect. The observed
gain increases as the initial SNR increases and we obtain
significant improvements with respect to critically decimated
transforms of about 0.25 dB. It is also interesting to note
that the observed gain in terms of SNR leads to quite visible
differences. In Fig. 4, cropped versions of the first channel of
the Tunis image are displayed, for a low value of the initial
SNR (4.66 dB). We can notice that the proposed method [see
Fig. 4(f)] allows to better recover edges whereas the three others
[see Fig. 4(c), (d), and (e)] result in more blurred images, where
some of the original structures are missing. This is especially
visible for the image denoised with the BLS-GSM estimator
[see Fig. 4(d)].

In the following, we focus on the method introduced in this
paper and more specifically on the variations of its performance
according to the parameter setup.

B. Preprocessing Stage

In order to improve the denoising performance in the mul-
tichannel context, additional linear procedures can be applied.
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Fig. 4. Cropped versions of Tunis image (channel b = 1, initial SNR equal to 4.66 dB) and (a) original image, (b) noisy image, (c) denoised image using
ProbShrink red. (1 x 1), (d) denoised image using BLS-GSM red. 4 parent method, (¢) denoised image using curvelets, and (f) denoised image using our method

(employing a DTT).
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Fig. 5. Representation of the different considered ROVs in the DWT domain
(the black triangle will be estimated taking into account the white ones);
(a) ROV1 the purely intercomponent one and (b) ROV2 combining intercom-
ponent and spatial dependencies.

Actually, different linear preprocessings of the components may
be envisaged.

» The simplest idea consists in decorrelating the spectral
components of the image to be estimated in order to
process them separately. Knowing the noise covariance
matrix P(“), we can deduce the original data covari-
ance matrix (assumed here to be spatially constant):
r'® = 1™ _ 1™ from the observed data covariance
matrix T™), More g)recisely, by performing an eigende-
composition of ré , we seek for an orthogonal matrix
U® such that T® = USDE(U®)" where D® is

a diagonal matrix. Then, the transformed multichannel
image is ((U(S))Tr(k))k and it is corrupted by a spatially
white zero-mean Gaussian noise with covariance ma-
trix (U(S))TI‘(“)U(S). We then proceed to the nonlinear
wavelet estimation of the decorrelated components as
described in the previous sections.

e Instead of decorrelating the components, we may try to
make them statistically independent or, at least, as inde-
pendent as possible. A number of ICA methods have been
developed for this purpose in recent years [47]. In this case,
a linear transform V() (which is not necessarily orthog-
onal) is applied to the multichannel data.

The proposed estimator already includes an optimized linear
combination of some of the components of the ROV. It is there-
fore expected to provide competitive results with regard to tech-
niques involving some linear preprocessing. In order to make
fair comparisons and evaluate the improvements resulting from
the optimization of the linear part of the estimator, we provide
simulations where the ROV is the same whatever the prepro-
cessing is (we have chosen the same ROV as in the previous sec-
tions). In addition, when a decorrelation or an ICA is employed,
the linear part of the estimator is chosen equal to the identity.
We finally propose to compare these results with a simple linear
MSE estimator based on a linear combination of coefficients
from different channels.

Numerical results displayed in Table IV allow us to evaluate
the proposed approach without optimization of the linear pa-
rameter vector, the same estimator combined with an ICA of
the multichannel data (using the JADE algorithm [47]) or a pre-
decorrelation stage and, finally our approach with an optimized
linear part.
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TABLE IV
INFLUENCE OF DIFFERENT PREPROCESSINGS ON TUNIS IMAGE DENOISING (02 = 258.9). SYMLETS OF LENGTH 16 ARE USED

| Transform ]| Channel [| SNRj; [| Without transf. | ICA [ Decorrelation | MSE Lin. | Opt. lin. |

b=1 8.664 13.84 14.66 15.15 15.18 15.75

DWT b=2 9.653 14.39 15.03 15.36 15.28 15.89
b=3 8.926 15.15 13.85 15.11 15.26 15.84

Average 9.081 14.46 14.51 15.21 15.24 15.83

b=1 8.664 14.13 14.37 15.43 15.42 15.94

DTT b=2 9.653 14.66 14.67 15.64 15.53 16.09
b=3 8.926 15.38 14.26 15.26 15.52 15.98

Average 9.081 14.72 14.43 15.44 15.49 16.00
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Fig. 6. Representation of the different considered ROVs in the DTT domain, with and without postprocessing stage (the black triangle will be estimated taking
into account the white ones); (a) ROV1 the purely intercomponent one and (b) ROV2 combining intercomponent and spatial dependencies.

TABLE V
INFLUENCE OF THE NEIGHBORHOOD IN TUNIS IMAGE DENOISING (AVERAGE VALUES COMPUTED OVER THREE CHANNELS ARE PROVIDED AND 62 = 258.9)
USING SYMLETS (LENGTH 16) (TOP) AND AC FILTER BANK (LENGTH 16) (BOTTOM)

[ Transform ][ SNRyye || ROVI | ROV2 || Transform | SNRye || ROVI [ ROV2 |
DWT (symlets) || 9.081 || 1542 | 15.83 || DWT (AC) | 9.081 || 1549 | 15.76
DTT (symlets) || 9.081 || 1577 | 16.00 || DTT (AC) | 9.081 | 15.88 | 16.01
From these results, it is clear that including some linear pro- fﬁbl)m(k) = [(r](,f’rln(k))b,]"', while for aDTT [see Fig. 6(a)],
cessing is useful for multichannel image denoising. The ICA we use
only brings slight improvements, possibly due to the fact that
the associated transform is not orthogonal. Predecorrelating , , T
. . —(b) (® H()
the data significantly increases the SNR; however, the fully I‘j,m(k) = [(Tj,m(k))b, ) (7" j,m (k)) b,}
optimized version of our estimator remains the most effective —) % T
method. uj,m(k> = [(uj,m(k>)b,:| (53)
T
<H®) 1.y _ H(b') ®)
o) = (1) (ria) |
C. I the Neighborhood ai® k) = [ (5 '
. Influence of the Neighborhoods 0, (k) = U on (k) . (54)
’ ’ bl

The ROV can be defined as desired and plays a prominent role
in the construction of our estimator. We study here the influence
of different choices of the ROV:

1) ROV1 corresponds to an intercomponent neighbor-

hood. When a DWT is employed [see Fig. 5(a)], we have

2) ROV2 corresponds to a combination of a spatial 3 x 3
and an intercomponent neighborhood as considered in the
previous sections and shown in Figs. 5(b) and 6(b).

The linear part of the estimator is defined as in Section V-A.
The corresponding results are given in Table V.
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TABLE VI
DENOISING RESULTS ON TUNIS IMAGE CONSIDERING I'{™) AND USING SYMLETS (LENGTH 16)

[ Channel || o2 | SNRiu || Surevect DWT [ Proposed DWT [[ Surevect DTT | Proposed DTT |
b=1 25.89 18.66 20.58 21.16 20.85 21.24
b=2 258.9 9.653 18.53 18.61 18.75 18.82
b=3 491.9 6.138 14.20 14.55 14.51 14.69

Average 11.49 17.76 18.11 18.04 18.25
TABLE VII

RESULTS OBTAINED APPLYING DIFFERENT ESTIMATORS ON TRENTO IMAGE (02 = 258.9)

Channel SNRjnit Surevect | Proposed BLS-GSM red | Surevect | Proposed
DWT DWT + parent DTT DTT
b=1 -2.907 8.661 8.945 8.311 8.984 9.251
b=2 -6.878 8.375 8.427 6.536 8.805 8.839
b=3 -3.836 8.288 8.443 7.341 8.647 8.761
b=14 2428 9.525 9.799 9.836 9.901 10.01
b=>5 4.765 11.18 11.52 11.38 11.61 11.77
b=26 -1.560 9.545 9.685 8.167 9.945 10.00
Average -1.331 9.262 9.470 8.596 9.649 9.770

In order to compare different possible wavelet choices, the
results are provided both for symlets of length 16 and a 4-band
filter bank given in [52] which is denoted by AC. These results
can also be compared with the ones given in Section V-A where
Daubechies filters of length 8§ are used.

Concerning the neighborhood influence, we note that taking
into account spatial dependence leads to a significant improve-
ment with regard to intercomponent dependence.

Concerning the wavelet choice, it appears that the 4-band AC
wavelets yield slightly better results than the dyadic symlets
choosing ROV1 and equivalent results choosing ROV2. Both
outperform Daubechies wavelets whichever ROV we choose.

D. Various Noise Levels

In this section, we consider that the image channels are
corrupted at different noise levels. Thus, the noise is spa-
tially white, zero-mean, Gaussian with covariance matrix
Pgn) = Diag(o?,...,0%).

The resulting numerical results are displayed in Table VI
with the corresponding noise levels, when our estimator is
used with ROV2. Noticeable differences can be observed when
comparing Surevect with our method both considering DWT
and DTT transforms.

E. Increased Number of Channels

A strong advantage of the proposed method is that, unlike
many multicomponent approaches limited to RGB (three com-
ponents) images, it may process any kind of multichannel im-
ages, whatever the number of channels is. We consider here the
6 channel Trento image. We apply the Surevect estimator (both
using DWT and DTT), the BLS-GSM estimator (taking into ac-
count the parent coefficient), and our estimator using ROV2.
From the results provided in Table VII, we see that, while the
number of channels is increased, our method still outperforms
the other ones especially when a DTT is used. With the increase
of the number of channels, the reduced redundancy of the DTT
becomes another attractive feature of the proposed approach.

VI. CONCLUSION

In this paper, we have proposed a nonlinear Stein based es-
timator for wavelet denoising of multichannel data. Due to its
flexible form, the considered estimator generalizes many ex-
isting methods, in particular block-based ones. Although the
proposed approach has been applied to satellite images, it could
also be used in any multivariate signal denoising problem. Be-
sides, the estimator has been used in conjunction with real dual-
tree wavelet transforms but complex ones or other frame decom-
positions could be envisaged as well. In the context of frame
representations, it should however be noticed that the proposed
estimator minimizes the risk over the frame coefficients and not
on the reconstructed signal, which may be suboptimal [21], [53].
Another question that should be investigated in future work is
the ability of the proposed framework to exploit interscale de-
pendencies in addition to spatial and intercomponent ones, as
considered in [21] for the mono-channel case. In order to ob-
tain an interscale denoising method, an appropriate ROV should
be defined and the interscale statistics of the noise should be
available.
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