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Abstract

The use of multicomponent images has become widespreadthétimprovement of multisensor
systems having increased spatial and spectral resolutidosever, the observed images are often
corrupted by an additive Gaussian noise. In this paper, wénéerested in multichannel image denoising
based on a multiscale representation of the images. A ratilike statistical approach is adopted to take
into account both the spatial and the inter-component tadioas existing between the different wavelet
subbands. More precisely, we propose a new parametric me@mliestimator which generalizes many
reported denoising methods. The derivation of the optinshmeters is achieved by applying Stein’s
principle in the multivariate case. Experiments perforroadnultispectral remote sensing images clearly

indicate that our method outperforms conventional wavedgtoising techniques.
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. INTRODUCTION

Many real world images are contaminated by noise during thejuisition and/or transmission. In
particular, multichannel imaging is prone to quality detgigon due to the imperfectness of the sensors
often operating in different spectral ranges [1], [2]. IWer to alleviate the influence of such disturbing
artifacts on subsequent analysis procedures, denoisimgpap as a crucial initial step in multicomponent
image enhancement. In this context, attention has beentpaildveloping efficient denoising methods.
Usually, the noise removal problem is considered as a reigregroblem. The challenge thus resides in
finding realistic statistical models which lead to both effitiend tractable denoising approaches. To this
respect, linearly transforming the signal from the spal@ain to a more suitable one may drastically
improve the denoising performance. The rationale for suclaastormation is the observation that
some representations possessing good energy concemiaatiodecorrelation properties tend to simplify
the statistical analysis of many natural images. For itgathe Discrete Wavelet Transform (DWT)
constitutes a powerful tool for image denoising [3], [4]. TD&/T, computed for each channel/component
separately, usually yields “larger” coefficients for sigfehtures and “smaller” ones for noise since it
forms an unconditional basis for several classes of regidggnals [5]. For monochannel signals or images,
the seminal work of Donoho and Johnstone has shown that a werelet coefficient thresholding
constitutes a simple yet effective technique for noise cédn [6]. Based on Stein's Unbiased Risk
Estimator (SURE), they have proposed the SUREshrink techniqu&iibsequently, several extensions
of their work have been performed,g. in [8]-[11]. Recently, the denoising problem in the wavelet
domain has gained more attention in the case of multichanmedies. Indeed, the increasing need for
multicomponent images in several applications such asgakiiiaging and remote sensing has motivated
a great interest in designing tractable denoising methedg&dted to this kind of images. Componentwise
processing can be performed for each modality, but a joinbidéng should be preferred in order to exploit
the cross-channel similarities in an efficient way [12]. Thebpem of a joint estimation in the wavelet
domain has been formulated in [13]. More precisely, the digeit threshold estimators was investigated
in two situations: overcomplete representations of a noisgge [14] and multiple observations of the
same image [13]. A scale-adaptive wavelet thresholdingdeagyned for multichannel images in the case
of an i.i.d. (independent identically distributed) Gaassvector noise whose components are independent
and have the same variance [15]. In a Bayesian framewor&ralgerior models have been considered such
asmultivariateBernoulli-Gaussian ones [16]. A generalized Gaussiamiligton was also considered for

modelling the marginal distribution of each subband in egttdinnel and a simple shrinkage was applied
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depending on the local spectral activity [17]. A vectordmaseast-square approach was also investigated
in the wavelet domain [18]. Recently, the application of Steprinciple [19]-[21] in the multivariate
case has motivated the design of a nonlinear estimator ih [B2this paper, links existing between
the proposed nonlinear estimator and Bayesian approaclesdiscussed. In particular, the structure of
the estimator was motivated by a multivariate Bernoulli€dan model reflecting the sparseness of the
wavelet representation as well as the statistical depaneeexisting between the different components.
We point out that the form of the estimator in [22] is not thensaas the one proposed in this paper.
In particular, the estimator in [22] does not involve anyesirolding operation. Moreover, the estimator
does not allow to take into account spatial dependenciesriytthose existing between the multichannel
data at a given position.

In parallel to these works, the idea of performing a jointtspadenoising of the coefficients, rather
than using a conventional term-by-term processing, haggaden statistics. This idea, stemming from
an incentive for capturing statistical dependences betvepatial neighboring wavelet coefficients, was
first investigated for single component images in both noyeBin and Bayesian cases [23], [24]. A
successful extension was also carried out in the case ofiamatnel images by considering hybrid
(spectral and spatial) neighborhoods [25].

In this paper, we aim at building a new estimator allowingaket into account the various correlations
existing in multichannel image data. This estimator alsovigdes a unifying framework for several
denoising methods proposed in the literature. More prBgisar contributions are the following.

e The method applies to any vector-valued data embedded intavamidte Gaussian noise. As illustrated
later on, many examples of such multivariate contexts rictenponent, spatial and inter-scale) can be
found. They naturally include multivariate denoising obtal with vectors of samples sharing the same
spatial position in different channels.

e The estimator can be computed in any image representationidoRor instance, in addition to wavelet
domains, usually considered in conventional denoisindhoo, we propose to exploit more general frame
decompositions such as the dual-tree wavelet transforiy [28)].

e The computation of the estimated value can be performed Withnelp of various observations. Again,
our method includes most of the reported estimation metlagtiag in that way. Furthermore, it offers
a great flexibility in the choice of these auxiliary data.

e The form of the proposed estimator is quite general. Moreigebc we focus on deriving thresholding
estimators including an exponent parameter and a linear@ptimal parameters are derived from Stein’s

principle.
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e The denoising approach allows to handle any covariance xnbh&iween the multichannel noise
components.

Notwithstanding its generality, the proposed approacharamtractable and compares quite favorably
with state-of-the-art methods. The paper is organized dswsl In Section I, we present the relevant
background and introduce notations for a general fornuratif the estimator, based on the concept of
Reference Observation Vector. In Section lll, we descrileegtoposed multivariate nonlinear estimator.
In Section IV, we give the specific form taken by this new estomé&ir multichannel images decomposed
by a wavelet transform or an/-band dual-tree wavelet transform. In Section V, experimerdsults
are given for remote sensing images showing that the propesgmator outperforms existing ones and
some concluding remarks are drawn in Section VI.

Throughout this paper, the following notations will be usked:)M be an integer greater than or equal
to 2,Ny; ={0,...,M —1} andN3, = {1,...,M —1}; Z, R andR, are the sets of integers, reals and
positive reals;[.] denotes rounding towards the immediate upper integerdBegi denotes the Fourier
transform of a functioru, (0,,)mez is the Kronecker sequence (equal to Inif= 0 and O otherwise),

(f), = fif f>0and0 otherwise andl{A} = 1 if condition A is true and 0 otherwise.

[I. BACKGROUND
A. General formulation of the multichannel estimator

In multisensor imagingB vectors of observed data samples’) (k))xek, ..., (1P (k))kek, are
provided whereB is the number of effective sensors aiids a set of spatial indice&(c Z?). Generally,
these data correspond to noisy realizationsBofunknown signals(s() (k))kek, ..., (%) (k))kex,
respectively. Subsequently, our task will consist in deyjsmethods to reduce the noise present in
the observations. Two alternatives can be envisaged incthirisext. On the one hand, a monochannel
approach builds an estimaté?bek) of s() (k) only from the observationg ) (k))yck, for each channel
b e {1,...,B}. On the other hand, a multivariate technique attempts inat s(*) (k) by accounting
not only for the individual data sefr® (k)}yck, but also for the remaining ongs-(" (k) }iexk, - - .,
{r®= V(&) bkex, {rOV(K) ek, -0 {r P (k) ek

Thus, one of the simplest relevant denoising approach dsrnsisalculating the estimated valé((abek)
of s(k) as

A

b
o = 10O 00) &
where f is a scalar function defined on the real line. For instance,ramlsige function can be used,

possibly involving some threshold value. Such a technigw®imsmonly used in regression, when outliers
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have to be removed in order to improve the representativithe fit [28]. Althoughr® (k) does not
necessarily depend on other observed samples, for stedctsignal or image analysis, neighboring
samples often present some correlations. Consequentliparmvement can be expected fq‘f(bek) is
calculated with the help of a subs’@tfgf)(k) of observed sample locations. Average or median filtering
[29, p. 243-245] are examples where the estimated sampkndspn its neighborhood. As a result, a
more general estimation rule is:

(JSL

0= 7O 0Dy ery0): ?

With underlying Markovian assumptions, the context{géb) (k') can be restricted to a limited

heer® o
number of values around the sample locatioriThese values can be gathered in a veetoi(k) which
will be designated as thReference Observation Vect(ROV). We have then

A
S

o) = £E0 1), 3)

The multivariate case can also be described by such a forifhwia allow the ROV to contain additional
samples from the remaining channels in order to exploit titericomponent statistical dependencies.

Another degree of freedom lies in the choice of a suitable alonfior data representation. While
virtually any transform can be chosen, special attentios bh@en paid to multiscale transforms. For
example, if a decomposition onto a-band wavelet basisM > 2) [30] is performed, the observed
images are represented by coefficienﬁn(k) defined at resolution level] > 1 and subband index
m € N2, and the corresponding ROV will be denoté](tﬁl,(k). Since the noise is usually less correlated
than the data, the DWT is applied in order to provide a sparsgresentation of the data of interest,
before further analysis [3], [4]. The goal becomes to geeematimates%slzl(k) of the unknown wavelet
coefficients'sfr)n(k) of the original images:

A(0) _(b)

Sjm(k) = f(T; m (k). (4)

Then, the inverse DWT is applied to the estimated coefficiantgder to reconstruct the estimated signal
§(b8k) in the spatial domain. In the literature concerning demgistiwo key issues have been addressed.
The first one lies in the definition of the ROV. The second one carsctre choice of an appropriate
function f or, in other words, a suitable expression of the estimatothé next subsection, we give a

brief overview of the main ROVs proposed until now.
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B. Reported ROVs in the DWT domain

Popular componentwise methods operating in the DWT domanvaushrink [5] and SUREshrink

[7]. They both employ a very basic ROV reduced to a scalar value

) (k) = r? (k). (5)

j7m j7m

Similarly to what can be done in the spatial domain, the wavedefficients can also be processed by
block rather than individually, again in a mono-channel way [43%], [31]-[33]. The main motivation
for this technique is to exploit the spatial similaritiedween neighboring coefficients in a given subband.
The introduction oid — 1 spatial neighbor¥; ,..., k1 of the current sample indexed lkyin the ROV

allows to take into account the spatial dependencies:

Ty

(k) = [

(

k), (ka0 (kae)] T (6)

-]7m

For higher dimensional data, the ROV may also consist offimiafits sharing similar orientations,
possibly within different scales [34]. Another generdii@a of the scalar case takes into account the
inter-scale similarities between the current coefficierd #re homologous ones defined at other scales.
Based on empirical observations in image compression [8%]las been proposed to use the current
coefficient ancestors at coarser scglesl, j+2, ..., jn eventually up to the coarsest leve[36]-[38]:

meRovﬁ“

,Im

(k) thus includes the corresponding — j + 1 coefficients at locatiork, in subbandm,
at resolution level.

In the case of multicomponent data, additional samplesob@d from the different channels can be
included in the ROVs, as shown in [34], [39] for color imagenad| as for multispectral image denoising.

Basically, theinter-componentorrelations can be taken into account through the follgWR©OV [22]:

T (k) = [0 (), ... P o) T (7)

J,m > jm

Such a ROV includes all the coefficients of all channels at theesgpatial location, in the same subband
m and at the same resolution levgl In [25], a more sophisticated multicomponent R®§?r)n(k) has
been defined which combines both spatiatl multichannel neighbors. As particular cases, such an ROV
encompasses the ROV in (7) and, also the ROV in (6). In additiee ROV may include coefficients
from different subbands.

A final potential extension of the ROVs is related to the chaoicthe transform. Indeed, it has been long
observed that a decomposition onto a wavelet basis suffarsd lack of shift-invariance as well as a poor

directionality, resulting in denoising artifacts at lowgsal to noise ratios. A simple way for alleviating
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these problems is to use a frame decomposition built from ianunf wavelet bases. In particular,
a number of papers [40]-[42] have demonstrated significapraeements in scalar shrinkage when
resorting to a translation-invariant wavelet represémtatThe latter can be viewed as a decomposition
onto a union of shifted versions of a unique wavelet bagishand dual-tree wavelet decompositions [27]
constitute another example of a union of 2 (resp. 4) wavedseb in the real (resp. complex) case. The
corresponding mother wavelets are then derived from thediretby Hilbert transforms, which results
in an improved directional analysis. For such frame decaitipns, one can extend the notion of ROV
to include samples produced by the different wavelet bast®wohpositions operating in parallel. These
facts will be further developed to motivate the applicatifrihe general estimator proposed in this paper

to an M-band dual-tree wavelet frame [27].

C. A unifying framework for shrinkage functions

In the aforementioned works, the estimation is often peréat by shrinkage, so exploiting the sparse-
ness of the representation. The most well-known method vwgmoped in the pioneering works of Donoho

and Johnstone [5]. The estimating functigris then given by

Fr%,00) = sign(r'%, (1) mase{ |, () — 2,0} ©

s
for a soft thresholding with threshold value> 0, wheresign(-) is the signum function. Equivalently,
by using the ROV in (5), the estimating function can be exggdsas
FE () = (‘“%S‘H) i (). (9)
mmkl /g
Some works [43] have focused on the improvement of the schlamkage rule, yielding for instance
smoother functions such as the garrote shrinkage basedddnwhich is defined as:
FEDL () = (W) i (). (10)
T m®@P )
Several authors have proposed vector-like generalizatiorthe scalar shrinkage. Cai and Silverman
[23], have proposed a block estimator which takes into agcoiormation on neighboring coefficients
in each subband, as expressed as in (6). This estimator desith@ maximum likelihood estimator when
the block size is greater than 2. This method, named “NeigtiB)aconsists in applying the following

shrinkage rule:

)
‘77m

—=(b) 2 Y 7.2
L IE MI2 — Ao\
(k) = | == T (k) (11)
K e ),
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where A\ > 0, d is the number of components in the Ra\gfn(k) is a subpart of the RO\éjsl;)l(k)

is the associated vector of estimated valug$, denotes the classical Euclidean normRsff and o2
denotes the noise variance. Such a function is clearly regeni of the scalar garrote shrinkage defined
in (10). Based on an asymptotic minimax study, Cai and Sileersuggested appropriate values for
and d. They considered both overlapping and non-overlappingawagsiof this approach. In particular,
the so-called “NeighCoeff” method corresponds to the caben@{lgl(k) reduces to a scalar estimate.

Then, the corresponding estimating function is:

() 2 Y32

.. (k)||*“ = \d

[ J7m<(b3u a> 6o -
175 (k)12 n

In the meantime, Sendur and Selesnick [45] introduced a Bayeapproach allowing to model inter-

FED(K) = (

scale dependencies between two consecutive levels. Thdsarsagonsequently formulated the problem

in the 2-band wavelet domain. In their approach, the ROVViergbyffr)n(k) = [r§?3n(k), r](.lfgl,m([%])]T,

()

QH’m([%}) being the “parent” ofr](.f’r)n(k) (at the next coarser resolution). By considering as a prior

model the non-Gaussian bivariate probability density fiomc

000, 500 T ocexp (= L2\ 0000 4 s KD ), >0 13

the following Maximum A Posteriori (MAP) estimator was deidve

7O (k)| — ¥
£, 09) = (” sm(= ) 9 (1) (1)
Ll /),

where the noise variance is again denoted-By

More recently, in the context of signal restoration protdei@ombettes and Wajs [46] have studied the
properties of proximity operators corresponding to theisohs of some convex regularization problems.
In particular, an interpretation of one of their resultshis following. Let us adopt a Bayesian formulation
by assuming that the vectcféi)n(k) is a noisy observation of the vectcséf’r)n(k) of multichannel
coefficients at locatiork, embedded in white Gaussian noise with varianée Further assume that

the vectorSSg.f’Bn(k) are independent of the noise, mutually independent and aawdor distribution
(0)

proportional taexp(—A|-[|) with A > 0. The MAP estimation o$;,, is found by solving the optimization

problem:

) (k)| (15)

min Nl + 5 u —

It is shown in [46] that the minimizer of the MAP criterion is

£ (k). (16)

L Fm

W0 (rrﬁ-f?n(k)u —w)
j,m — 0
IEL), (k)
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The three previous block-thresholding estimators have lgegived from different perspectives and
they have also been applied in different ways. However, ioissible to describe them through a general

shrinkage factom(HfoW, where

VreRy,  m(r) = (T_A)+ (17)

-
andg > 0 and\ > 0 take specific values in each of the aforementioned block astirs. We also remark
that this generalized shrinkage obviously encompassesati@nd garrote thresholdings provided in (9)
and (10).

IIl. PROPOSED NONLINEAR ESTIMATOR
A. Notations

We will now propose a more general adaptive estimator thathm applied in any representation
domain. We will therefore drop the indicgsandm and we will consider the general situation where an

observation sequende(k))xez2 of d-dimensional real-valued vectorg € N, d > 1) is defined as
vk € 72,  F(k) =5(k) +n(k), (18)

where(i(k))kez2 is aN (0, T™) noise ands(k))xez- is an identically distributed second-order random
sequence which is independent @f(k))kcz:. We will assume that the covariance matiix™ is

invertible. These random vectors are decomposed as

(k) = [f<k)] s = {f“‘)] k) = {7“‘)] 19)
() S0 (k)

wherer(k), s(k) andn(k) are scalar random variables. We aim at estimating the firspooents(k)
of the vectors(k) using an observation sequen@ék))icx WhereK is a finite subset oZ?. We recall
that, although (18) does not introduce an explicit depeceldretweers(k) and the vectorr(k) of the
lastd — 1 components of (k), such a statistical dependence may exist, due to the dependetween

the components of(k) themselves. The estimated sequence will be denote(cﬁﬁy))keK.

B. Form of the adaptive estimator

In order to gain more flexibility in the denoising procedufe following generalized form of shrinkage
estimate will be considered:

A
S

(k) = m(IF(k)[17) @' (k). (20)
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10

where the functiom,(-) is given by (17) withA > 0, 8 > 0 andq € R?. The vectorq corresponds to

a linear parameter. We notice, in particular, that if theeghwold value\ is set to zero, the considered
estimator reduces té(b)(k) = q'r(k). This shows that linear estimators constitute a subset of the
considered class of estimators. In addition, by an appatgchoice of the vectay, estimators consisting

of a preliminary decorrelation of the data followed by a #imelding step also appear as special cases of
the proposed estimator. Note that, in conventional mudiictel data analysis, it is customary to decorrelate
the data before processing. The most common examples are fiaethel conversions (like those from
stereo to mono in sound processing or from RGB to luminaihcefsinance components in color image
or video processing). When the data modalities are lessiatdized (for instance in satellite imaging),
adaptive methods such as the Karhunegetransform or Independent Component Analysis (ICA) [47]
can be used. The latter adaptive transforms can also be pedom the transformed domaie,g. in
each subband.

Furthermore, in order to limit the computational complexitythe implementation of the estimator, it
can be useful to constrain the vecipto belong to some vector subspace of reduced dimengiend.

Let P € R¥™? pe the matrix whose column vectors form a basis of this sulespale have then = Pa

wherea € R?. As a simple example, by choosing

whereI,; denotes the identity matrix of siz&€ x d’, we see that we only introduce in the estimator a
linear combination of the firs#’ components of the vectai(k). In summary, the proposed form of the

estimator is parameterized by 5 anda for a given choice ofP.

Our objective is to find the optimal parameters that minimieequadratic risk defined &8\, 3, a) =

Ells(k) — ?(k)P], for a predefined value dP. It is easy to show that the risk reads:
R(\, 3, 2) = E[|s(k) — 5(k)|’]
= E[ls(0)[*] + E[lm(IF®)|”)a" P Tr(k)[*] — 2E[(IF () |)a" PTr(k)s(k)].  (21)
The minimization of the risk is not obvious for any observatimodel. Indeed, since the(k) are
unknown, it seems impossible to express the rightmost f&i(||[t(k)||%)a’ P "r(k)s(k)]. However, in

the case of &aussiannoise, it is possible to apply an extension of Stein’s prilecid9] for deriving

an explicit expression. In the next subsection, we willestmtd prove such extended Stein’s formula.
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11

C. Stein’s formula

Proposition 1: Let f : RY — R be a continuous, almost everywhere differentiable fumcsioch that:

0 € RY, Ht”hfioof(t) exp ( _(t-9) (r(;l)) (t — 9)) _0: 22)
ElF(r(0)] < o0 and [ “LTE ] < +oc, 3)
Then,
E1((00)s(8)] = ELF 1)) — €[ 75 5] el (22
Proof: Let T : R? — R? be a continuous, almost everywhere differentiable fumcsioch that
VO € RY, i () exp ( _(t-0) (F(;)) (t— 9)) — 0:; (25)
E[T(F(k))[?] < +oc and E[H H | <+ (26)

where|| - ||r is the Frobenius norm. In this multivariate context, Steinimgple [19] can be expressed

as
E[(s(k))s ()] = ET(s(i0)e” ()]~ E[EL ), @)

Eqg. (24) follows by choosind@ : t +— [f(t),0,...,0]" and focusing on the top-left element of matrix

E[T(T(k))s' (k)]. [ |

D. Risk expression

We define the functiorf : u +— 7, (||ul®) a"PTu. It is easy to check that this functiof satisfies
the conditions of Prop. 1. Consequently, the last term canabmulated thanks to (24). This yields

E150) (709 = El 170 ~ E[ 2 0)] Ty 8)

whereI'™") = E[@(k)n(k)]. We then have
T r(k)||? a'P'r
w = aTPTf(k)w 77)\(”?(1{)”6)81)7(1{)

or(k) or(k) or(k)
- o001 > A ny 20ECIl 83” T (k)Pa + 1 ([E()])Pa
— (£ ") Pa + AE(K)E (K)Pa (29)
where (k) = 1{| £(k)[|? > A} sy £(k). This leads to the following expression of the risk:

R(X, B,a) = E[lr(k) — f(£(k)*] + 2E[n([F(k)|*)]a"P T 4 20 P TE[E(k)E T (K)IT) — 0°
(30)
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12

whereo? = E[[n(k)|?].
We will now look for parameters, g anda that minimize the risk expression (30) for a given choice
of P.

E. Determination of the parameter

We first aim at calculating the value afthat minimizes the risk (30). By noticing that the risk is a
guadratic convex function od, the minimization can be performed by differentiating w4 and then
finding a*(\, #) such thataR/aa()\,ﬁ,a*()\,ﬂ)) = 0. It readily follows that

a*(\, 8) = (PTER([£()|*yE(k)x " (k)[P) " P (Elm (k) [1%)r (k)E (k)]
— Elm(IF(k) 7)™ — XE[£(k)r (1)) 7). (31)
F. Determination of the parametessand 3
Starting from (30), the risk?(), 3, a) can be re-expressed &), 3,a) = E[py g..(k)] where
prpa(k) = as(k)A? + a1 (k)A + ag(k) (32)
and

ao(K) = (k) = o + 1{| £(K) |7 > A}aTPT (200 4 (aTPTa(k) - 27(K)) 7(K))

) — 9aTpT ({10 —a PTE()) (k) — D™ ()rnn INY:
o) = 1{[| a0 > 2y & B E00)”
Q(k) ]l{H (k)” > )‘} Hf(k)”gﬁ

In practice, under standard mixing assumptions (iofk))xcz2 and (s(k))xezz [48], R(A, B,a) can be
estimated via an empirical averagA%(A,ﬁ, a) computed overK, provided that the data length® =
card(K) is large enough. Following a procedure similar to the seargiiemented for the SUREshrink
estimator, we will subsequently determine optimal values and for this consistent risk estimate. More
precisely, the norms of the ROM4r(k)||)kex are first sorted in descending order, so tfetk, )| >
|Ir(k2)|| > ... > ||t(kk)||. To study the variations oﬁ(A,ﬂ,a) w.r.t. A, we consider the case when

A€ I, with i € {1,..., K + 1} and

[IE(k1)1?, o0) if i =1
Liy = § [IF(ki) |17, |[F(kig—1)||?) i io € {2,..., K} (33)
[0, IF(kx)||?) if ig= K + 1.
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13

On the intervall;,, the risk estimate then takes the following fotm:

20 1

K
R( ( Z pxp,alki) + Z p)\,ﬁ,a(ki)) (34)

i_io
’L()*l Z() 1 lo—1

:%(vz +)\Za1 Z +Z — (K +1—i0)o?). (35)

=1 =1 =19

A
In other words,R(\, 3,a) is a piecewise second-order polynomial functionof Assume now that
io € {2,..., K}. For given values off anda, the minimum oveiR of the polynomial in (35) is reached

at

Z? 11a1(k) 36
2220110‘2( ) (39)

The minimum over]||t(k;,)||°, |F(ks,—1)||°] of the estimated risk is therefore given by

S‘io (ﬁv a)

Nio(Bra) i [IE(k) 1 < A (8, 2) < [[E (ki -1)l1°
A (Bra) = (ki) 7 if i (8,2) < £ (k)17 (37)
IF(ip-0)II i Xig (8,2) > [IF(ki,-1)]17.

The minimizersAj(3,a) and A ,(5,a) of the estimated risk ovef; and I, can be found in a

=

similar way. The global minimizeA*(3, a) of the estimated risk is subsequently computed as

N(Ba)=arg  min  R(L(6a),5a). (38)

(Afo(ﬁva))ng:OgKJrl
To determine the optimal valyg*(a) of the exponenf?, we can then proceed to an exhaustive search

over a sefV of possible values for this parameter by choosing

5*(a) = argmin R(\*(4, a), 5, a). (39)
BEY

In our experiments, it was observed that a restricted setfefvasearch values is sufficient to get good

results.

G. lterative optimization algorithm

The optimal expression of the vectaris derived in a closed form in Section IlI-E as a function of
the parameters. and 5. In this way, the optimization problem simply reduces to tleermination of

the latter two parameters. On the other hand, givea procedure for determining the optimal values of

'We adopt here the conventidn;_, - = 7% . - = 0.
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A and S is described in Section IlI-F. In order to get optimized valoéshe estimator parameters, we
therefore propose to apply the following iterative optiatian approach:
1) Initialization: Fix P and ). Set the iteration number= 1 anda(® = [1,0,...,0]T € R¥
2) lterationp
a) Setg® = g*(alP~D) and A?) = \*(®) alP—1)) as described in Section IlI-F.
b) Seta® = a*(A® () using (31) where the expectations are replaced by sampiaatss.
3) Setp «— p+ 1 and goto step 2 until convergence.
4) Return the optimized valugs\(?), 3?), a(?)) of the parameters.
We point out that, although we were not able to prove the agieree of the optimized parameters, the
generated sequencé()\(p),ﬁ(m, a(P)), is a decreasing convergent sequence. This means that indprove

parameters are generated at each iteration of the algorithm

IV. MULTICOMPONENT WAVELET DENOISING

Our objective here is to apply the nonlinear estimator dgyd in the previous section to noise
reduction in degraded multicomponent images by consigenavelet-based approaches. The original
multichannel image is composed 8f e N* componentss(?) of size L x L, with b € {1,...,B}. Each
image component(®) is corrupted by an additive noisé®, which is assumed independent of the images

of interest. Consequently, we obtain the following noispetvation field-(*) defined by:

vkeK, r®x)=s®k) +n® k), (40)
whereK = {1,..., L}2. Following a multivariate approach, we define:
sk) = [, sP )T
vk € K, nk) 2 [WOK),...,.nH )T . (41)
) =[Ok, 1B )T

Obviously, the observation model (40) can be rewritterivkse K, r(k) = s(k) + n(k). In many
optical systems, the noise stems from a combination of pitand electronic noises cumulated with
guantization errors. Subsequently, we will assume that thieenvector procesa is zero-mean iid
Gaussian with covariance matX™. In [1] and [2], this was shown to constitute a realistic asption
for satellite systems. It is worth noticing that a non diaglomatrix I'™) indicates that inter-component

correlations exist between co-located noise samples.
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Hereafter, we will use two decompositions. The first one cessis a critically decimated\/-band
wavelet transform whereas the second one, corresponds 3é-bBand dual-tree wavelet decomposition

we recently proposed [27] which permits a directional asialyf images.

A. M-band wavelet basis estimation

1) Model: We first consider an/-band orthonormal discrete wavelet transform (DWT) [30]rove
resolution levels applied, for each chanhgto the observation field(®). This decomposition produces
M?—1 wavelet subband sequenoej(%L, m € N2,\{(0,0)}, each of size_; x L; (whereL; = L/M7)?,

at every resolution level and an additional approximation sequemf;b% of size L; x L, at resolution

level J.

o2 o )

4 )

WT WT DTT DTT

bt T t b bt T t b
5(® \‘!‘/ #® 5(b) \‘I_‘/ #®
L) — n ()
iid V(0, T(™)) iid A/(0, (™))
WT DTT
" (15 )

Fig. 1. Considered models in the wavelet transform domain (left) and iduhétree transform domain (right).

On the one hand, the linearity of the DWT yields (see. Figvk)e K;, 1;m(k) = sjm(k)+n;m(k)
whereK; = {1,...,L;}* and

A

sjm(k) 2 s\ 0 (), ..., s (1)) T,
A

rjm(k) 2 [ K), . o),
A

njm(k) =[S0 k), ..., 0 1))

On the other hand, the orthonormality of the DWT preserves ghatial whiteness oh;,. More
specifically, it is easily shown that the latter field is an i.iM(0, T®) random vector process.
A final required assumption is that the random veci@rsa (k))rcx are identically distributed for any

given value of(j, m).

2For simplicity, L is assumed to be divisible hy/”.
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2) Associated estimatorAs described in Section Ill, our estimator can be directlyli@opto the M -
band DWT coefficients. As in conventional approaches, theaqpation coefficientsife. j = J and
m = (0,0)) are kept untouched. The paramet&ss,, 5;m andq;m can be determined adaptively, for
every subbandj, m) and every componeibt In this case, the ROV can be scalar, spatial, inter-comtone

or combined spatial/inter-component. More detailed eXxampill be given in Section V.

B. M-band dual-tree wavelet frame estimation

o H
H H¢M|—. —-|TMH H, }:I'

B i i N v
G e
Gr HLM|—> —.|mf|-.| G }:I,

i e -

Fig. 2. Pair of analysis/synthesid -band para-unitary filter banks.

71,0,0 M-band
Prefiltering |"0:0-0| ~ M-band filter bank Us iy s
r (F1) filter bank Linear —
combinaison
of the
H
H "Dual” subbands U my mo
H "Dual’ T1,0,0 M-band +H—+ I
Prefiltering|" 99| p7-band filter bank
(£2) filter bank
Linear (ul,ml,mz)(ml,mz);é(o,o)
combinaison
of the (’U’Il{,'ml,mq)(m,l,mg)yé((),o)
subbands [
STEP | STEP 2 STEP 3

Fig. 3. Dual-tree2D.

1) A brief overview of the decompositioffhe M-band real dual-tree transform (DTT) consists in
performing two separablé/-band orthonormal wavelet decompositions in parallel lastilated by Fig.

2. The one-dimensional wavel€ts,, )»<n:, corresponding to the primal tree (upper branch) are assumed
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known and the “dual tree” one(sbﬁ)mem (used in the lower branch) are built so that they define Hilbert
pairs with the primal ones. This reads in the frequency domainc N}, ﬁ(w} = —1SIgN(w)thm (w).
Details of construction are given in [27] and the global soheof the decomposition is shown in Fig. 3.
An important point is that the dual-tree decomposition uidels a post-processing, consisting of a linear
isometric combination of the primal/dual subbands (see B)g.This post-processing constitutes an
essential step for obtaining a directional analysis. FmaNo sets of coefficients (primal and dual ones)
are obtained, which means that this representation ingavkmited redundancy of a factor two.

2) Model: Applying this decomposition to a multichannel image haviigcomponents and using
similar notations to Section IV-A.1, we obtain the followingefficients for the original data, the observed

ones and the noise, respectively:

« before post-processings;m(k), sfm(k)), (rjm(k), r]}-fm(k)), (n)m(k), nfm(k));
« after post-processingy;m(k), vi', (k)), (wjm(k), uj, (kK)), (Wjm(k), wj, (k).

Note that a post-processing is not applied to all subbanels [27]) as the Hilbert condition is only
verified by mother wavelets. As a consequence, the linearasamncombination is not performed for
subbands processed by low pass filters. More precisely, teeppocessing consists of the following
unitary transform of the detail coefficients: for ai € N%2,

1
V2

Similar relations hold for the original and observed datath@mmnore, invoking the linearity property of

vk € K;, Wim(k) = —=(njm(k) + 0}, (k) and wj (k) = \}i(nj,m(k) -}, (k). (42)

the transform, these coefficients are related by (see. Figght)y:
Yk € Kj, I‘j7m(k) = Sj7m(k) + l’lj’m(k) and u]"m(k) = Vj7m(k) + Wj7m(k)
rim (k) = i (k) + 155, (k) Wi (k) = Vi (k) + Wi, (k). (43)

j’m J7m ]7m ]7

3) Noise statistical propertiestn our recent work [49], [50], a detailed analysis of the eastatistical
properties after such a dual tree decomposition has beériped. In the sequel, some of the main results
we obtained are briefly summarized. Let us recall the definitibthe deterministic cross-correlation

function between the primal and dual wavelets: for(al, m’) € N3,

V1 € R, Ymme (T) = / wm(a:)q/)g, (x —7) d. (44)
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We have obtained the following expressions for the covaadields: for allj € Z, m = (my, ms) € N2,
m' = (m},mh) € N3, k = (k1,k2) € K; andk’ = (K}, kb) € K;,
E[1m (k) (0 (') ']

E[10}0 1 (k) (1) (K)) ']

= L™ 6,0, it Oyt Oy — i, O,

E[nj,m(k)(ngm'(k/»T] = I‘(n)'le,m’l(kll - kl)'}’mz,m’z (ké —k2).

It can be further noticed that, fan # 0, the random vectora; ., (k) and n]}fm(k) at a given location
k are mutually uncorrelated.
After post-processing, the covariances of the transformade coefficient fields can be easily deduced

from (42): for all (m, m’) € N37 and (k, k') € K3,

E[Wjm (k) (W (k) '] =E [0 (k) (1000 (') 7] + E [0 () (0] (K)) ] (45)
E[W i (k) (W3 (K) '] =E [0 (k) (1000 (k') ] = E{11m (k) (05 (K) '] (46)
E[Wj,mn (k) (Wi () '] =0. (47)

In summary, noise coefficients are inter-tree correlatedrieethe post-transform whereas after the post-
transform, they are spatially correlated. This constitai@$mportant consequence of the post-processing
stage.

4) Associated estimatorn the M-band DTT case, the primal and dual coefficients are both esina

For each componeinte {1,..., B}, the estimator reads: for the subbands which are not lypearhbined
(m ¢ Ny,),
A(b) _(b (b) b
San () =y (IE 011%) () TE o () (48)
AH( _H(b HO) o H(b)y ToH(b
Sam00) = s (L2 0) ) (c12)) T 1), (49)

and, for the combined subbands (€ N7},),

A(0) . )

Gam(k) = 100 ([0, 0) ) () T () (50)
AH(b _ H(b) T

Srenle) = o (1855 ()%= (agi) a5 (k). (51)

where fffﬁ)(k) and r ( ) (resp.u *() (k) and u ( )) are the ROVs for the primal and dual
coefficients before (resp. after) post—transformatlon. Birlyi to the DWT case(\;m, 3j,m,qjm) and
(A ]m,ﬁ me 4, H ) can be adaptively determined by minimizing the quadrask dver the frame coef-

ficients for every subbangj, m) and every componeritin each tree. Furthermore, the approximation
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coefficients are also kept untouched. The denoised multighanmages are then obtained from the
estimated wavelet coefficients by inverting the DTT using th&naal reconstruction developed in [27].
In this case, a great flexibility exists in the choice of the REWce the latter can be scalar, spatial,
inter-component, inter-tree or combined spatial/intemponent/inter-tree as will be illustrated in the

next section.

V. NUMERICAL RESULTS

We now provide numerical examples showing the efficiency efptoposed method. In our simulations,
we consider different multichannel remote sensing images. the sake of clarity, we only provide
experimental results concerning two multispectral imadée first one designated as Tunis corresponds
to a part of a SPOT3 scene depicting a urban area of the city o8 = 3). The second one named
Trento is a Landsat Thematic Mapper image having initiallyesegchannels. The thermal component
(the sixth component) has been discarded since it is notasing the remaining ones. Hence, the test
image Trento is & = 6 component image. In order to obtain reliable results frortatistical viewpoint,
Monte Carlo simulations have been conducted. Accordingitcegperiments, averaging the mean square
error over five noise realizations is sufficient to obtain ¢stest quantitative evaluations.

In the following, we discuss several topics: in particulae compare our method with other recently
proposed estimators, possibly having a multivariate strec Then, we consider different pre-processings
that can be performed on the multichannel data before applyie estimator, thus expecting improved
results. The ROV being defined in a generic way in the previogtae we also study the influence
of specific choices of this ROV on the denoising performancevel as the influence of the wavelet
choice (considering varioud/-band filter banks). When different decompositions are peréa, we
set the maximum decomposition level so that the size of thgroxgmation fields remain the same.
Consequently, we decompose the images avewels for a4-band filter bank structure antlevels for
a dyadic one.

If o(®) denotes the standard deviation of the clean multichanmapooents®) (of size L; x L,) we

define the initial and the final signal to noise ratios éﬂgg and, SNF%I,?| in the b-th channel as:

al

()2 (b)\2
b & (c"”) Ly Ly b A (0\")*L1 Ly
SN -nitia|—1010g10<Hs(b)_r(b)”2 , and SNRY., =10log, s 50z ) G2

Then, all theB channel contributions are averaged into global values efitlitial and final signal to

noise ratio SNRitia and, SNRpa.
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TABLE |

BRIEF DESCRIPTION OF THE TESTED METHODS

Acronym | Description ‘ Ref. H Acronym Description ‘ Ref. ‘
Biv. Bivariate shrinkage method [45] Multivariate methods
BLS-GSM | Bayesian Least Squares (BLS)| [34] || ProbShrink| Multivariate method for3-band images using | [39]
Gaussian Scale Mixture (GSM (-x.) critically decimated DWT and taking into
using critically decimated DWT account a (x .) neighborhood in each channel
BLS-GSM | BLS-GSM using critically [34] || ProbShrink| Multivariate method for3-band images [39]
+ parent decimated DWT and taking int0 red. ( x.) | using undecimated DWT and taking into
account the parent coefficient account a (x .) neighborhood in each channel
BLS-GSM | BLS-GSM using a full [34] || Surevect Estimator based on an extended SURE [22]
red. steerable pyramid approach using a critically decimated DWT
(redundant transform)
Curvelets | Block estimator using curvelet | [51]
transform:7.5 times redundant

A. Comparison with existing methods

We aim in this section at comparing the proposed approadh saveral existing denoising methods
which are briefly described in Table I. Tests are performed é6m2ax 512 SPOT image of Tunis city
(B = 3) (as some multivariate methods are limitedtband images) corrupted by an additive zero-mean
white Gaussian noise with covariance matﬂg‘) = 02 Iz, wherel denotes the identity matrix of size
B x B.

We first study techniques that use orthogonal wavelet tramsfoWwe employ Daubechies wavelets of
order4 in all the following estimators:

1) the Bivariate shrinkage, which takes into account istatle dependencies, the last level being

processed by inverting children and parent role [45];

2) the BLS-GSM method developed in [34] including or not the pareighborhood and considering

a3 x 3 spatial neighborhood;

3) the ProbShrink estimator [39] for multivariate data witl8 & 3 spatial neighborhood (in each

channel)}

4) the Surevect estimator [22], which only takes into acconmiticomponent statistical dependencies;

3We use the toolbox available from Portilla’s websditet p: / / www. i 0. csi ¢. es/ PagsPers/ JPortill a/.

*We use the toolbox available fromZRirica’s websitent t p: // t el i n. rug. ac. be/ ~sanj a/ .
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5) the proposed estimator where the set of values take/ﬁ](-fﬂy is V ={0.5,1,1.5,2}, the ROV is
represented in Fig. 5(b). A subspace constraint is addede«:mel:t:torqg.f’r)n SO that(qg.f’lll)ngf’r)n(k)

reduces to a linear combination of the multichannel dathetbnsidered location and the 4 spatial

nearest neighbors.

TABLE I
DENOISING RESULTS(AVERAGE VALUES COMPUTED OVER3 CHANNELS) ON TUNIS IMAGE USING NON REDUNDANT

ORTHOGONAL TRANSFORMS(SEE TAB. |) WITH DAUBECHIES WAVELETS OF ORDER4 (LENGTH 8).

o2 SNRpit Biv | Probshrink| BLS-GSM | BLS-GSM | Surevect| Proposed

3 x3) + parent DWT DWT
650.3| 5.081 || 11.85 11.86 12.05 12.14 13.08 13.42
410.3| 7.081 12.89 12.84 13.11 13.21 14.12 14.52
258.9| 9.081 || 13.99 13.91 14.26 14.36 15.24 15.70
163.3| 11.08 | 15.19 15.08 15.49 15.60 16.43 16.96
103.1| 13.08 || 16.49 16.37 16.81 16.93 17.70 18.28
65.03| 15.08 || 17.88 17.54 18.22 18.35 19.04 19.65

The obtained results are provided in Table Il (the initial SNiRsy be different in each channel although
the noise variance is fixed). For the first three methods, degomas been performed for each component
of the multichannel data. For orthogonal wavelets, Prob&Heads to better results when it is associated
to a spatial neighborhood than when considering only thelpialue to be estimated. It performs quite
similarly to the Bivariate shrinkage. The BLS-GSM estimatorpeuforms these two methods providing
a gain of approximatively.2 dB (up to0.3 dB by including the parent coefficient in the neighborhood).
Nevertheless, the Surevect estimator brings more signifioaptovements and it can be observed that
our method leads to even better numerical results whatéeeimitial noise level is. The new structure
of the estimator coupled with a spatial and spectral blodcg@ssing may explain such an improvement.
Furthermore, the gain increases as the initial SNR increageish is interesting in satellite imaging
where the noise is often of low intensity. To be fair, we wolik# to mention that, although Bivariate
shrinkage, Probshrink and BLS-GSM were designed for monoclhamage denoising, extensions of
these methods to the multivariate case could probably bisaged.

In the monochannel case, it has been reported that the usedahdant transforms often brings
noticeable improvements in denoising [51]. We subseguexmtmpare methods that have been proved to

be very efficient when combined with a redundant analysis:

1) the curvelet denoising [51] using a curvelet frame witledundancy approximatively equal 1o
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and a block thresholdingy;

2) the BLS-GSM method using steerable pyramids witbrientations, including the parent neighbor-
hood and & x 3 spatial neighborhood as described in [34],

3) the ProbShrink estimator for multivariate data using umdated wavelet transform [39] (with
Daubechies wavelets of leng#) and taking into account & x 3 or no spatial neighborhood;

4) the Surevect estimator [22], extended to DTT (with Daubeshvavelets of lengtB);

5) the proposed estimator using a DTT where- {0.5,1, 1.5,2}, the ROV is represented in Fig. 6(b).
The vectorqéf’r)n (resp.qfr(ﬁ)) is such that it introduces a linear combination of the nchkinnel

data in the primal (resp. dual) tree at the considered locaind the 4 spatial nearest neighbors.

TABLE Il
DENOISING RESULTS(AVERAGE VALUES COMPUTED OVER3 CHANNELS) ON TUNIS IMAGE USING REDUNDANT

TRANSFORMS(SEETAB. |) WITH DAUBECHIES WAVELETS OF ORDER4 (LENGTH 8).

o2 SNRuit || Curvelets| BLS-GSM red | Probshrink red| Probshrink red| Surevect| Proposed

+ parent (3 x3) 1x1) DTT DTT
650.3 | 5.081 1191 12.92 13.00 13.33 13.54 13.72
410.3| 7.081 12.94 14.00 14.04 14.38 14.59 14.80
258.9| 9.081 14.04 15.15 15.13 15.50 15.70 15.97
163.3 | 11.081 15.17 16.38 16.28 16.68 16.87 17.21
103.1 | 13.081 16.33 17.68 17.51 17.92 18.11 18.52
65.03 | 15.081 17.56 19.04 18.76 19.20 19.42 19.88

It is worth pointing out that the same noisy images as useldembn redundant case have been processed
by the redundant transforms. As shown in Table I, cungel@d not seem really appropriate in this
multichannel context in spite of their promising resultstiie monochannel one. ProbShrink and BLS-
GSM methods are very efficient in the redundant case and ProlSiaws its superiority when using an
inter-component neighborhood. The methods using a DTT diatperthe existing ones in all the cases.
We point out that the DTT has a limited redundancy of a factoo@gared with the other considered
redundant decompositions. It can be noticed that our methoddes better results than Surevect. The
observed gain increases as the initial SNR increases and taim gignificant improvements with respect
to critically decimated transforms of abo25 dB. It is also interesting to note that the observed gain
in terms of SNR leads to quite visible differences. In Fig. 4pgred versions of the first channel of the

Tunis image are displayed, for a low value of the initial SNR§ dB). We can notice that the proposed
SWe employ theCur vel ab 2. 0 toolbox which can be downloaded froht t p: / / www. cur vel et . or g.
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(d) (e) (f)

Fig. 4. Cropped versions of Tunis image (chanhet 1, initial SNR equal to4.66 dB) and (a) Original image, (b) Noisy

image, (c) Denoised image using ProbShrink rédx 1), (d) Denoised image using BLS-GSM red. + parent method, (e)

Denoised image using curvelets and (f) Denoised image using our méthgaloying a DTT).

method (see Fig. 4-(f)) allows to better recover edges wisettea three others (see Fig. 4-(c,d,e)) result
in more blurred images, where some of the original strustame missing. This is especially visible for
the image denoised with the BLS-GSM estimator (see Fig. 4-(d)).

In the following, we focus on the method introduced in thipgraand more specifically on the variations

of its performance according to the parameter setup.

B. Pre-processing stage

In order to improve the denoising performance in the mudtietel context, additional linear procedures
can be applied. Actually, different linear pre-processiofl the components may be envisaged:
e The simplest idea consists in decorrelating the spectrapooents of the image to be estimated in
order to process them separately. Knowing the noise cowaiaatrixI'™, we can deduce the original
data covariance matrix (assumed here to be spatially auhsiz®) = '™ — '), from the observed
data covariance matrik(*). More precisely, by performing an eigendecompositio'6?, we seek for

an orthogonal matri@XJ®) such thatT'®) = USD®E) (U®)T whereD®) is a diagonal matrix. Then,
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the transformed multichannel image (U®)) "r(k))x and it is corrupted by a spatially white zero-
mean Gaussian noise with covariance matfi¥®)) ' T(®U®), We then proceed to the nonlinear wavelet
estimation of the decorrelated components as describdeeiprevious sections.
e Instead of decorrelating the components, we may try to mhkentstatistically independent or, at
least, as independent as possible. A number of ICA (Indepgn@omponent Analysis) methods have
been developed for this purpose in recent years [47]. Indhs®, a linear transforiW®) (which is not
necessarily orthogonal) is applied to the multichannehdat

The proposed estimator already includes an optimized linearbination of some of the components
of the ROV. It is therefore expected to provide competitiesults w.r.t. techniques involving some linear
pre-processing. In order to make fair comparisons and atalthe improvements resulting from the
optimization of the linear part of the estimator, we provsienulations where the ROV is the same
whatever the pre-processing is (we have chosen the same R@Vtlae previous sections). In addition,
when a decorrelation or an ICA is employed, the linear parthef estimator is chosen equal to the
identity. We finally propose to compare these results withnapi linear MSE estimator based on a
linear combination of coefficients from different channels.

Numerical results displayed in Table 1V allow us to evaludute proposed approach without optimiza-
tion of the linear parameter vector, the same estimator awedbwith an ICA of the multichannel data
(using the JADE algorithm [47]) or a pre-decorrelation stagd, finally our approach with an optimized

linear part. From these results, it is clear that includingpnedinear processing is useful for multichannel

TABLE IV
INFLUENCE OF DIFFERENT PREPROCESSINGS ONTUNIS IMAGE DENOISING (02 = 258.9). SYMLETS OF LENGTH 16 ARE

USED.

TransformH ChanneIH SNRunit H Without transf.‘ ICA ‘ Decorrelation‘ MSE Lin. ‘ Opt. lin. ‘

b=1 8.664 13.84 14.66 15.15 15.18 15.75

DWT b=2 9.653 14.39 15.03 15.36 15.28 15.90
b=3 8.926 15.15 13.85 15.11 15.26 15.86

Average || 9.081 14.46 1451 15.21 15.24 15.84

b=1 8.664 14.13 14.37 15.42 15.42 15.95

DTT b=2 9.653 14.66 14.67 15.64 15.53 16.10
b=3 8.926 15.38 14.26 15.25 15.52 16.01

Average | 9.081 14.72 14.43 15.44 15.49 16.02

image denoising. The ICA only brings slight improvementssgiloly due to the fact that the associated
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transform is not orthogonal. Pre-decorrelating the dataifsigintly increases the SNR, however the fully

optimized version of our estimator remains the most effectnethod.

C. Influence of the neighborhoods
The ROV can be defined as desired and plays a prominent role iootigruction of our estimator.
We study here the influence of different choices of the ROV:

1) ROV1 corresponds to an inter-component neighborhoodenhDWT is employed (see Fig. 5(a)),
we havefg.f’l)n(k) = [(r(b')(k))b,]T, while for a DTT (see Fig. 6(a)), we use

J,m
Fin (1) = (1 0)) ... (i (9),17 and (k) = [(u]0),)7 (53)
B () = (3 00), . (1 (0), 1T w00 = (w5 00), 7. (54)

2) ROV2 corresponds to a combination of a spadiat 3 and an inter-component neighborhood as

considered in the previous sections and shown in Figs. 5(t)6én).

sjuauodwod [eloads g
sjusuodwod [enodads g

(a) (b)

Fig. 5. Representation of the different considered ROVs in the DWT doitthe black triangle will be estimated taking
into account the white ones); (a) ROV1 the purely inter-component ndgl) ROV2 combining inter-component and spatial

dependencies.

The linear part of the estimator is defined as in Section V-A.
The corresponding results are given in Table V. In order topame different possible wavelet choices,
the results are provided both for symlets of lengthand a4-band filter bank given in [52] which is

denoted by AC. These results can also be compared with thegiuesin Section V-A where Daubechies
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Fig. 6. Representation of the different considered ROVs in the DTT agméth and without post-processing stage (the
black triangle will be estimated taking into account the white ones); (a) RO¥Iptinely inter-component one and (b) ROV2

combining inter-component and spatial dependencies.

TABLE V
INFLUENCE OF THE NEIGHBORHOOD INTUNIS IMAGE DENOISING (AVERAGE VALUES COMPUTED OVER3 CHANNELS ARE

PROVIDED AND 02 = 258.9) USING SYMLETS(LENGTH 16) (TOP) AND AC FILTER BANK (LENGTH 16) (BOTTOM).

Transform H SNRit H ROV1 ‘ ROV2 H Transform ‘ SNRnit H ROV1 ‘ ROV2 ‘

DWT (symlets) | 9.081 || 15.42 | 15.84 || DWT (AC) | 9.081 || 15.48 | 15.77
DTT (symlets) | 9.081 || 15.77 | 16.02 || DTT (AC) | 9.081 || 15.88 | 16.02

filters of length8 are used.

Concerning the neighborhood influence, we note that takitm ascount spatial dependence leads to a
significant improvement w.r.t. inter-component dependehtall cases, combining spectral and spatial
neighborhood leads to the best results.

Concerning the wavelet choice, it appears that the 4-bandvaglets yield slightly better results than
the dyadic symlets choosing ROV1 and equivalent result®gsihng ROV3. Both outperform Daubechies

wavelets wathever the ROV chosen.
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D. Various noise levels
In this section, we consider that the image channels areigi@d at different noise levels. Thus, the

noise is spatially white, zero-mean, Gaussian with comaéamatrixrgn) = Diag(o?,...,0%). The

TABLE VI

DENOISING RESULTS ONTUNIS IMAGE CONSIDERINGT'S"”) AND USING SYMLETS (LENGTH 16).

’ ChanneIH o} ‘ SNRunit H Surevect‘ Proposed DWTH Surevect DTT| Proposed DTT

b=1 25.89| 18.66 20.58 21.15 20.84 21.24
b=2 258.9| 9.653 18.53 18.63 18.76 18.84
b=3 491.9| 6.138 14.20 14.57 14.55 14.71
Average 11.49 17.76 18.12 18.05 18.26

resulting numerical results are displayed in Table VI witte tcorresponding noise levels, when our
estimator is used with ROV2. Noticeable differences cantimeoved when comparing Surevect with our

method both considering DWT and DTT transforms.

E. Increased number of channels

A strong advantage of the proposed method is that, unlikeymauiticomponent approaches limited to
RGB (3 components) images, it may process any kind of multichaimages, whatever the number of
channels is. We consider here thehannel Trento image. We apply the Surevect estimator (bsitigu
DWT and DTT), the BLS-GSM estimator (taking into account the paoeefficient), and our estimator

using ROV2. From the results provided in Table VII, we see,thdtile the number of channels is

TABLE VII

RESULTS OBTAINED APPLYING DIFFERENT ESTIMATORS ONTRENTO IMAGE (02 = 258.9).

Channel|| SNRni: || Surevect| Proposed|| BLS-GSM red| Surevect| Proposed
DWT + parent DTT DTT
b=1 -2.907 8.661 8.945 8.311 8.984 9.255
b=2 -6.878 8.375 8.430 6.536 8.805 8.876
b=3 -3.836 8.288 8.430 7.341 8.647 8.749
b=14 2.428 9.525 9.796 9.836 9.901 10.00
b=5 4.765 11.18 11.53 11.38 11.61 11.78
b==6 -1.560 9.545 9.700 8.167 9.945 10.02
Average || -1.331 9.262 9.472 8.596 9.649 9.780

increased, our method still outperforms the other onescehewhen a DTT is used. With the increase

of the number of channels, the reduced redundancy of the DT@nbes another attractive feature of the
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proposed approach.
VI. CONCLUSION

In this paper, we have proposed a nonlinear Stein based éstifoawavelet denoising of multichannel
data. Due to its flexible form, the considered estimator geizes many existing methods, in particular
block-based ones. Although the proposed approach has Ippéiachto satellite images, it could also be
used in any multivariate signal denoising problem. Besitles estimator has been used in conjunction
with real dual-tree wavelet transforms but complex onegterdframe decompositions could be envisaged
as well. In the context of frame representations, it showlddver be noticed that the proposed estimator
minimizes the risk over the frame coefficients and not on theomstructed signal, which may be
suboptimal [21], [53]. Another question that should be stigated in a future work is the ability of
the proposed framework to exploit inter-scale dependsnicieaddition to spatial and inter-component
ones, as considered in [21] for the mono-channel case. kr ¢odobtain an interscale denoising method,

an appropriate ROV should be defined and the interscaletstatef the noise should be available.
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