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Université de Marne-la-Vallée, Champs-sur-Marne

77454 Marne-la-Vallée, France
e-mail: {chaux,pesquet}@univ-mlv.fr

2 Institut Français du Pétrole, IFP
Technology, Comp. Sci. and Appl. Math. Div.

92500 Rueil Malmaison, France
e-mail : laurent.duval@ifp.fr

ABSTRACT

Dual-tree wavelet transforms have recently gained popular-
ity [1] since they provide low-redundancy directional anal-
yses of images. In our recent work, dyadic real dual-tree
decompositions have been extended to the M -band case, so
adding much flexibility to this analysis tool. In this work,
we propose to further extend this framework on two fronts by
considering (i) biorthogonal and (ii) complex M -band dual-
tree decompositions. Denoising results are finally provided to
demonstrate the validity of the proposed design rules.

Index Terms— Wavelet transforms, Hilbert transforms,
Image analysis, Image processing, Gaussian noise.

1. INTRODUCTION

Natural images often require a transformed domain process-
ing in order to improve their quality (denoising or restora-
tion tasks) or to be efficiently compressed. Powerful tools al-
lowing improved representations of images have been devel-
oped in the last ten years. They aim at capturing directional
features and often introduce some redundant analysis. They
can be classified into different categories: steerable filters, “-
lets” transforms including bandelets [2], curvelets [3], con-
tourlets [4], ... Meanwhile, the dual-tree wavelet decomposi-
tion has been introduced by N. Kingsbury [5]. This transform
is based on a combination of classical wavelet decomposi-
tions. It has been further investigated by I. Selesnick [6]. The
standard real dual-tree decomposition is 2 times redundant
and is nearly shift-invariant. In the 2-band case, in two di-
mensions, a complex version of this decomposition has been
obtained (then, the redundancy becomes equal to 4) and, more
recently, it has also been extended to biorthogonal represen-
tations [7]. The dual-tree transform is interesting for several
reasons: good directional analysis, low redundancy, improved
shift-invariance property, simplicity of implementation, re-
duced computational cost,... However, a limiting factor lies
in its dyadic structure which introduces some inherent de-
sign constraints. For example, it is well-known that is im-
possible to obtain real, orthogonal, symmetric and compactly
supported dyadic wavelets, except for the Haar one. In one
of our recent works [8], we have extended the real dual-tree

transform to the M -band case, which allowed us to gain more
freedom in the choice of the filters while providing a more
accurate frequency analysis.

In this work, we propose to extend the real 2D dual-tree
M -band wavelet transform to the biorthogonal complex case,
for an arbitrary integer value of the decimation factor M . The
paper is organized as follow: in Section 2 we show how to
design Hilbert pairs of biorthogonal wavelets. Then, Section
3 is devoted to the complex decomposition. Finally, denoising
applications are reported in Section 4.

Throughout the paper, the following notations will be used:
let M be an integer greater than or equal to 2,
NM = {0, . . . , M − 1} and N?

M = {1, . . . , M − 1}. Besides,
â denotes the Fourier transform of a function a, due denotes
the upper integer part of a real u, (δm)m∈Z is the Kronecker
sequence (equal to 1 if m = 0 and 0 otherwise).

2. BIORTHOGONAL HILBERT PAIRS OF
WAVELETS

We address in this section the problem of constructing a Hilbert
pair of M -band biorthogonal wavelets in the one dimensional
case. A biorthogonal wavelet basis corresponding to a mul-
tiresolution analysis of L2(R) is associated to an analysis and
a synthesis filter bank and the problem is then equivalent to
the design of 2M filters.

2.1. Problem statement

Let us start from an M -band biorthogonal wavelet decompo-
sition of L2(R). This decomposition is based on the joint use
of two sets of basis functions: (ψm)0≤m<M and (ψ̃m)0≤m<M

which satisfy the following scaling equations expressed in the
frequency domain:

∀m ∈ NM ,
√

Mψ̂m(Mω) = Hm(ω)ψ̂0(ω),
√

M
̂̃
ψm(Mω) = H̃m(ω)̂̃ψ0(ω). (1)

Furthermore, the associated M -band filter banks with fre-
quency responses (Hm)0≤m<M and (H̃m)0≤m<M satisfy per-



fect reconstruction properties:

∀(m,m′) ∈ N2
M ,

M−1∑
p=0

H̃m(ω + p
2π

M
)H∗

m′(ω + p
2π

M
) = Mδm−m′ . (2)

Similarly to the orthogonal case [8], we want to construct
Hilbert pairs of wavelets by defining functions (ψH

m)0≤m<M

and
(ψ̃H

m)0≤m<M such that

∀m ∈ N?
M , ψ̂H

m(ω) = −ı sign(ω)ψ̂m(ω)

̂̃
ψ

H

m(ω) = −ı sign(ω)̂̃ψm(ω), (3)

where sign designates the signum function. The filters with
frequency responses (Gm)0≤m<M and (G̃m)0≤m<M associ-
ated with these dual basis functions must also satisfy perfect
reconstruction conditions:

∀(m,m′) ∈ N2
M ,

M−1∑
p=0

G̃m(ω + p
2π

M
)G∗m′(ω + p

2π

M
) = Mδm−m′ . (4)

We now study how to design such filters.

2.2. Dual filter construction

The Hilbert conditions (3) imply that:

∀m ∈ N?
M , |ψ̂H

m(ω)| = |ψ̂m(ω)| and |̂̃ψ
H

m(ω)| = |̂̃ψm(ω)|.

In addition, by imposing that |ψ̂H
0 (ω)| = |ψ̂0(ω)|, and |̂̃ψ

H

0 (ω)|
= |̂̃ψ0(ω)|, the scaling equations (1) and their counterparts for
the dual wavelets lead to

∀m ∈ NM , Gm(ω) = e−ıθm(ω)Hm(ω)

G̃m(ω) = e−ıeθm(ω)H̃m(ω), (5)

where θm and θ̃m are real-valued 2π-periodic phase func-
tions. Assuming that (2) is satisfied, one can easily check
that the perfect reconstruction conditions (4) for the dual filter
bank are fulfilled if for all (m,m′) ∈ N2

M , θ̃m = θm (mod 2π)
and θm′ − θ̃m = θm′ − θm is 2π/M -periodic.
Conditions to be satisfied by θm and θ̃m are thus similar to
those obtained in the orthogonal case [8]. It can be deduced
that

∀p ∈
{

0, . . . ,
⌈M

2

⌉
− 1

}
,∀ω ∈

[
p
2π

M
, (p + 1)

2π

M

[
,

θ̃0(ω) = θ0(ω) = (d +
1
2
)(M − 1)ω − pπ,

and

∀m ∈ {1, . . . ,M − 1},

θ̃m(ω) = θm(ω) =





π

2
−

(
d +

1
2

)
ω if ω ∈]0, 2π[,

0 if ω = 0,

where d ∈ Z.

3. COMPLEX 2D DUAL-TREE WAVELET
TRANSFORM

Our objective in this section is to extend the complex dual tree
transform to the M -band case. We will see that an increased
number of directions can be selected and show how to imple-
ment the associated decomposition. Finally, the problem of
finding an optimized reconstruction will be discussed.

3.1. Direction selection

For all m ∈ N?
M and ε ∈ {−1, 1}, let us define the following

complex-valued functions from the wavelets (ψm)m∈N?
M

used
for the analysis stage:

∀x ∈ R, ψε
m(x) = ψm(x) + ıεψH

m(x).

If ε = 1 (resp. ε = −1), this corresponds to an analytic
(resp. anti-analytic) wavelet. By considering all the possible
combinations of tensor products of such wavelets, we obtain:
for all (m1,m2) ∈ N?2

M , (ε1, ε2) ∈ {−1, 1}2 and (x1, x2) ∈
R2,

ψε1
m1

(x1)ψε2
m2

(x2) =

ψm1(x1)ψm2(x2)− ε1ε2ψ
H
m1

(x1)ψH
m2

(x2)

+ ı
(
ε1ψ

H
m1

(x1)ψm2(x2) + ε2ψm1(x1)ψH
m2

(x2)
)

(6)

which reads in the Fourier domain:

ψ̂ε1
m1

(ω1)ψ̂ε2
m2

(ω2) =

(1 + ε1 sign(ω1))(1 + ε2 sign(ω2))ψ̂m1(ω1)ψ̂m2(ω2).

The latter expression shows that, depending on the choice of
ε1 and ε2, it is possible to select each quadrant of the fre-
quency plane as represented in Fig. 1.

Let us consider the real part (RP) and the imaginary part
(IP) of the expression in (6) and consider once again all pos-
sible situations. This leads to the two following cases:

â ε1 = ε2 = 1 or ε1 = ε2 = −1 :

RP: ψm1(x1)ψm2(x2)− ψH
m1

(x1)ψH
m2

(x2)

IP: sign(ε1)
(
ψH

m1
(x1)ψm2(x2) + ψH

m2
(x2)ψm1(x1)

)
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Fig. 1. Direction selection in the 2D frequency plane for M =
4, j = 1 and (m1, m2) = (2, 1). The four crosshatched areas
are separated using tensor products of analytic/anti-analytic
wavelets.

â ε1 = −ε2 = 1 or ε1 = −ε2 = −1:

RP: ψm1(x1)ψm2(x2) + ψH
m1

(x2)ψH
m2

(x2)

IP: sign(ε1)(ψH
m1

(x1)ψm2(x2)− ψH
m2

(x2)ψm1(x1)).

In other words, in order to implement the decomposition onto
(ψε1

m1
(x1)ψε2

m2
(x2))(m1,m2)∈N?2

M
, we need four separable 2D

wavelet analyses (see the corresponding filter bank structures
in Fig. 2). The two upper analyses, which are also present in
the real parts, are implemented in the real biorthogonal case.

These four M -band wavelet decompositions generate co-
efficients denoted by c••j,m[k], cHH

j,m[k], cH•
j,m[k] and c•Hj,m[k]

where j ∈ Z denotes the resolution level, m =
(m1,m2) ∈ N2

M is the frequency band index and k ∈ Z2 is
the spatial position. Finally, to obtain the desired directional
analysis, we compute the inner product of the image to be
processed with the RP and IP terms of the two-dimensional
wavelets as previously expressed. This is equivalent to per-
form the following linear combinations of the subbands: for
all m ∈ N?2

M ,

d••j,m[k] =
1√
2

(c••j,m[k] + cHH
j,m[k])

dHH
j,m[k] =

1√
2

(c••j,m[k]− cHH
j,m[k])

dH•
j,m[k] =

1√
2

(cH•
j,m[k] + c•Hj,m[k])

d•Hj,m[k] =
1√
2

(cH•
j,m[k]− c•Hj,m[k]).

3.2. Prefiltering stage

In a digital implementation of the dual-tree decomposition,
prefilters must be added to make the transition from the ana-
log formalism to discrete processing [8].
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Fig. 2. Two-dimensional analysis/synthesis filter banks cor-
responding to a biorthogonal complex wavelet transform.

Assume that the digital image (rk1,k2)(k1,k2) to be analyzed
is related to its analog version r(x1, x2) by the relation:

r(x1, x2) =
∑

(k1,k2)

rk1,k2χ(x1 − k1, x2 − k2)

where χ is an interpolation function in L2(R2). To perform
the first separable wavelet decomposition, we need to deter-
mine the approximation coefficients: c0,(0,0)[k1, k2] =
〈r(x1, x2), ψ0(x1−k1)ψ0(x2−k2)〉. Similar approximations
have to be computed for the three remaining trees. It is easy
to show that these operations can be performed by applying
four digital prefilters with frequency responses:

F1(ω1, ω2) =
∞∑

p1=−∞

∞∑
p2=−∞

χ̂(ω1 + 2p1π, ω2 + 2p2π)

ψ̂∗0(ω1 + 2p1π)ψ̂∗0(ω2 + 2p2π)

F2(ω1, ω2) =
∞∑

p1=−∞

∞∑
p2=−∞

χ̂(ω1 + 2p1π, ω2 + 2p2π)

(ψ̂H
0 (ω1 + 2p1π))∗(ψ̂H

0 (ω2 + 2p2π))∗

F3(ω1, ω2) =
∞∑

p1=−∞

∞∑
p2=−∞

χ̂(ω1 + 2p1π, ω2 + 2p2π)

(ψ̂H
0 (ω1 + 2p1π))∗ψ̂∗0(ω2 + 2p2π)

F4(ω1, ω2) =
∞∑

p1=−∞

∞∑
p2=−∞

χ̂(ω1 + 2p1π, ω2 + 2p2π)

ψ̂∗0(ω1 + 2p1π)(ψ̂H
0 (ω2 + 2p2π))∗.



3.3. Reconstruction

As already mentioned, the complex dual-tree transform has a
redundancy of a factor 4. As a consequence, the reconstruc-
tion is not unique and we have to pay attention to the choice
of the synthesis scheme.
Let r ∈ `2(Z2) be the vector of image values and c••, cHH,
cH•, c•H denote the coefficient vectors generated by the com-
plex dual-tree transform. The linear combination of the sub-
bands is not taken into account as it reduces to a basic isome-
try. The global decomposition operator can be written as

Dc : r 7→




c••

cHH

cH•

c•H


 =




D1r
D2r
D3r
D4r


 (7)

where, for all i ∈ {1, . . . , 4}, Di = UiFi where Fi repre-
sents the i-th prefiltering operation and Ui is the i-th M -band
separable biorthogonal wavelet decomposition.
A robust reconstruction of r is then obtained as the solution
of the minimization problem

inf
r

4∑

i=1

‖ci −Dir‖2Qi
(8)

where Qi is a positive self-adjoint operator and ‖.‖2Qi
=

〈.,Qi.〉. The minimizer allows us to defines a generalized
pseudo-inverse of the operator Dc which is expressed as:

Dc
] =

( 4∑

i=1

F†iU
†
iQiUiFi

)−1

(F†1U
†
1Q1, . . . ,F

†
4U

†
4Q4).

In practice, iterative approaches are generally necessary to
compute Dc

]. Notice however that, by choosing Qi =
(UiU

†
i )
−1, the generalized pseudo-inverse takes a simple form,

which can be easily implemented by combining the standard
synthesis filter bank structures with filtering operations.

4. EXPERIMENTAL RESULTS

We apply these different decompositions to image denoising.
More precisely, we aim at restoring the 512 × 512 Barbara
image which is corrupted by an additive zero-mean white
Gaussian noise. Four orthogonal decompositions are tested:
the real dual-tree transform with dyadic (DTT2) and 4-band
(DTT4) filter banks; the complex dual-tree transform with
dyadic (DTT2cx) and 4-band (DTT4cx) filter banks. In this
case, we use symlets of length 8 and 4-band filters of length
22. Moreover, we consider 4 additional biorthogonal trans-
forms: the dual-tree transform with dyadic (DTTbi2) and 4-
band (DTTbi4) filter banks; the complex dual-tree transform
with dyadic (DTTbi2cx) and 4-band (DTTbi4cx) filter banks.
In this case, we use standard biorthogonal 5/3 and 9/7 wave-
lets and the associated 4-band basis functions corresponding

to an equal-subband wavelet packet analysis. Classical es-
timators are applied to the resulting coefficients: Visushrink
(Visu), SUREshrink (SURE) and the bivariate shrinkage (Biv)
[9]. Quantitative results are given in Table 1. Here, the initial
SNR is equal to 5.67dB.

Visu SURE Biv
DTT2 9.47 12.66 13.69
DTT4 10.70 13.23 14.31

DTT2cx 9.72 12.84 13.95
DTT4cx 11.06 13.41 14.32
DTTbi2 8.55 11.65 12.73

5/3 DTTbi4 9.39 12.14 13.45
DTTbi2cx 8.78 11.88 13.44
DTTbi4cx 9.71 12.35 13.82
DTTbi2 9.33 12.40 13.62

9/7 DTTbi4 10.55 12.96 14.25
DTTbi2cx 9.56 12.59 13.97
DTTbi4cx 10.90 13.13 14.34

Table 1. Denoising results in terms of SNR (in dB).

One can observe that, for all estimators, the 4-band struc-
tures always bring significant improvements (at least 0.2dB)
with respect to the dyadic ones. Moreover, the complex de-
compositions outperform the real ones; the differences are
however smaller with the bivariate shrinkage, for 4-band or-
thogonal filter banks. One can also see that the 9/7 biorthog-
onal decompositions provide results close to orthogonal ones.
Nevertheless, biorthogonal decompositions could be more use-
ful in image coding applications where they are known to be
very effective.
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