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ABSTRACT

We propose a 2D generalization to the M -band case of the dual-
tree structure (initially proposed by N. Kingsbury and further in-
vestigated by I. Selesnick) based on a Hilbert pair of wavelets. We
particularly address the construction of the dual basis and the re-
sulting directional analysis. We revisit the necessary pre-processing
stage in the M -band case. While several reconstructions are pos-
sible because of the redundancy of the representation, we propose
a new optimal signal reconstruction technique, which minimizes
potential estimation errors. The effectiveness of the proposed M -
band decomposition is demonstrated via image denoising compar-
isons.

1. INTRODUCTION

The classical discrete wavelet transform (DWT) provides a means
of implementing a multiscale analysis, based on a critically sam-
pled filter bank with perfect reconstruction. It has shown very ef-
fective both theoretically and practically [1] in the processing of
certain classes of signals, for instance piecewise smooth signals,
having a finite number of discontinuities. But, while decimated
transforms yield good compression performance, other data pro-
cessing applications (denoising, analysis, detection) often require
other schemes, mitigating three of the typical DWT weaknesses.

One first drawback usually limits the practical performance
of DWT algorithms: (I) shift-variance, with respect to the value
of the transformed coefficients at a given scale. It often results
in shift-variant edge artifacts at the vicinity of jumps, which are
not desirable in real-world applications, signal delay being rarely
known. A second drawback arises in dimensions higher than 1:
tensor products of classical wavelets usually possess (II) poor di-
rectional properties. The later problem is sensitive in image detec-
tion or denoising applications.

A vast majority of the proposed solutions relies on adding
some redundancy to the transform. Redundancy based on shift-
invariant wavelet transforms [2] suppresses shift dependencies, at
the expense of an increased computational cost, which often be-
comes intractable in higher dimensions. Less computationally-
expensive approaches have been developed on complex filters for
real signals (we refer to [3] for an overview and design examples),
or by employing other wavelet frames [4]. For instance, it is possi-
ble to resort to the concatenation of several wavelet bases. One of
the most promising decomposition is the dual-tree discrete wavelet
transform, proposed by N. Kingsbury [5]: two classical wavelet
trees are developed in parallel, with filters forming Hilbert pairs.
Advantages of Hilbert pairs had been earlier recognized by other
authors [6]. The resulting analysis yields a redundancy of only 2d

for d-dimensional signals, with a much lower shift sensitivity and
better directionality in 2D than the DWT.

The design of dual-tree filters is addressed in [7], through
an approximate Hilbert pair formulation for the “dual” wavelets.
I. Selesnick also proposed the double-density DWT and combined
both frame approaches [8]. The phaselet extension of the dual-tree
DWT has been recently introduced by R. Gopinath in [9].

More recently, several authors have also proposed a projection
scheme with an explicit control of the redundancy or with specific
filter bank structures [10, 11]. Finally, other works on the blend-
ing of analytic signals and wavelets must be mentioned [12, 13],
in the context of denoising or higher dimension signal processing.
Developments based on “geometrical” wavelets will not be men-
tioned here, in spite of their interest.

A third drawback, less frequently pointed out, concerns (III)
design limitations in two-band decompositions: orthogonality, re-
alness, symmetry, compactness of the support and other properties
(regularity, vanishing moments) compete. The relative sparsity
of good filter banks amongst all possible solutions is also well-
known. In order to improve both design freedom and filter behav-
ior,M -band filter banks and wavelets have been proposed [14–16].

Improving on our previous work [17], we propose the con-
struction of a 2D dual-tree M -band wavelet decomposition. The
organization of the paper is as follow: in Section 2, we review
the theory for the construction of M -band Hilbert pairs. In Sec-
tion 3, we extend previous results on the pre-processing stage to
the M -band context and illustrate the direction extraction with the
constructed wavelets. Since several reconstructions are possible,
due to the decomposition redundancy, Section 4 then proposes an
optimal pseudo-inverse based frame reconstruction, which allows
to reduce the effects of coefficient estimation errors. Finally, we
provide practical results for image denoising applications in Sec-
tion 5. Conclusions are drawn in Section 6.

2. CONSTRUCTION OF M -BAND HILBERT PAIRS

In this section, we will focus on 1D signals belonging to the space
L2(R). Recall that an M -band multiresolution analysis of L2(R)
(withM ≥ 2) is defined by one scaling function (or father wavelet)
ψ0 ∈ L2(R) and (M − 1) mother wavelets ψm ∈ L2(R), m ∈
{1, . . . ,M − 1} [15]. These functions are solutions of the follow-
ing scaling equations:

1√
M
ψm(

t

M
) =

∞X

k=−∞
hm[k]ψ0(t− k), (1)

where the sequences (hm[k])k∈Z are square summable. In the fol-
lowing, we will assume that these functions (and thus the associ-



ated sequences (hm[k])k∈Z are real-valued. The Fourier transform
of (hm[k])k∈Z is a 2π-periodic function, denoted by Hm. For the
set of functions ∪M−1

m=1 {M−j/2ψm(M−jt − k), (j, k) ∈ Z2} to
correspond to an orthonormal basis of L2(R), the following para-
unitarity conditions must hold:

M−1X

p=0

Hm(ω + p
2π

M
)H∗m′(ω + p

2π

M
) = Mδm−m′ , (2)

where δm = 1 if m = 0 and 0 otherwise.
Our objective is to construct a “dual” M -band multiresolution

analysis defined by a scaling function ψH
0 and mother wavelets

ψH
m, m ∈ {1, . . . ,M − 1}. More precisely, the mother wavelets

will be obtained by a Hilbert transform from the “original” wavelets
ψm, m ∈ {1, . . . ,M − 1}. In the Fourier domain, the desired
property reads:

∀m ∈ {1, . . . ,M − 1}, bψH
m(ω) = −ı sign(ω) bψm(ω), (3)

where sign is the signum function and ba designates the Fourier
transform of a function a. Furthermore, the functions ψH

m are
defined by scaling equations similar to (1) involving real-valued
sequences (gm[k])k∈Z. In order to generate a dual M -band or-
thonormal wavelet basis of L2(R), the Fourier transforms Gm of
the sequences (gm[k])k∈Z must also satisfy para-unitarity condi-
tions.

The Hilbert condition (3) yields:

∀m ∈ {1, . . . ,M − 1}, | bψH
m(ω)| = | bψm(ω)|. (4)

If we further impose that | bψH
0 (ω)| = | bψ0(ω)|, the scaling equa-

tions lead to:

∀m ∈ {0, . . . ,M − 1}, Gm(ω) = e−ıθm(ω)Hm(ω), (5)

where θm is 2π-periodic. The frequency phase functions should
also be odd (for real filters) and thus only need to be determined
over [0, π].

In the 2-band case (under weak assumptions), θ0 is a linear
function on [−π, π[ [7]. In the M -band case, we will slightly
restrict this constraint on a smaller interval by imposing: ∀ω ∈
[0, 2π/M [, θ0(ω) = γω, where γ ∈ R. Then, after some tedious
calculations [17], the following result can be proved:

Proposition 1 Para-unitary M -band Hilbert filter banks are ob-
tained by choosing the phase functions defined by:

∀p ∈


0, . . . ,
lM

2

m
− 1

ff
, ∀ω ∈

h
p

2π

M
, (p+ 1)

2π

M

h
,

θ0(ω) = (d+
1

2
)(M − 1)ω − pπ,

∀m ∈ {1, . . . ,M − 1},

θm(ω) =

(
π

2
− (d+

1

2
)ω if ω ∈]0, 2π[,

0 if ω = 0,

where d ∈ Z and due denotes the upper integer part of a real u.
The scaling function associated to the dual wavelet decomposition
is such that:

∀k ∈ N, ∀ω ∈ [2kπ, 2(k + 1)π[,

bψH
0 (ω) = (−1)ke−ı(d+

1
2

)ω bψ0(ω). (6)

It should also be noted that, except in the 2-band case, θ0 exhibits
discontinuities on ]0, π[, due to the pπ term.

3. 2D DUAL-TREE DECOMPOSITION

Two-dimensional separable M -band wavelet bases can be derived
from the 1D dual-tree decomposition. Thus, we obtain two bases
of L2(R2): the first one corresponds to the classical 2D separable
wavelet basis while the second one results from tensor products
of the dual wavelet basis functions. A discrete implementation
of these wavelet decompositions starts from level j = 1 to go
up to the coarsest resolution level J ∈ N∗. The decomposition
onto the former 2D wavelet basis yields coefficients cj,m,m′ [k, l],
whereas the decomposition onto the dual basis generates coeffi-
cients cHj,m,m′ [k, l]. As pointed out in the seminal works of Kings-
bury and Selesnick, it is advantageous to add some pre- and post-
processings to this decomposition. We will now revisit these prob-
lems in the context of M -band decompositions.

3.1. Prefiltering

The wavelet transform is a continuous-space formalism that we
want to apply to a “discrete” image. We consider that the analog
scene corresponds to the 2D field:

f(x, y) =
X

k,l

f [k, l] s(x− k, y − l), (7)

where s is some interpolation function and (f [k, l])(k,l)∈Z2 is the
image sample sequence. Let us project the image onto the approx-
imation space V0 = Span{ψ0(x−k)ψ0(y− l), (k, l) ∈ Z2}. The
projection of f reads:

PV0(f(x, y)) =
X

k,l

c0,0,0[k, l] ψ0(x− k) ψ0(y − l), (8)

where the approximation coefficients are

c0,0,0[k, l] = 〈f(x, y), ψ0(x− k) ψ0(y − l)〉, (9)

and 〈 , 〉 denotes the inner product of L2(R2). Using Eq. (7), we
obtain:

c0,0,0[k, l] =
X

p,q

f [p, q] γs,Ψ0,0(k − p, l − q), (10)

where Ψ0,0(x, y) = ψ0(x)ψ0(y) and γs,Ψ0,0 is the cross-correlation
function defined as:

γs,Ψ0,0(x, y) =

Z ∞

−∞

Z ∞

−∞
s(u, v)Ψ0,0(u− x, v − y) du dv.

(11)
Similarly, we can project the analog image onto the dual approxi-
mation space V H

0 = Span{ΨH
0,0(x−k, y− l), (k, l) ∈ Z2} where

ΨH
0,0(x, y) = ψH

0 (x)ψH
0 (y). Then, the dual approximation coeffi-

cients are given by:

cH0,0,0[k, l] =
X

p,q

f [p, q] γs,ΨH
0,0

(k − p, l − q). (12)

Obviously, Eq. (10) and (12) can be interpreted as the use of two
prefilters on the discrete image (f [k, l])(k,l)∈Z2 before the dual-
tree decomposition. The frequency responses of these filters are

F1(ωx, ωy) =
∞X

p=−∞

∞X

q=−∞
bs(ωx + 2pπ, ωy + 2qπ) bψ∗0(ωx + 2pπ) bψ∗0(ωy + 2qπ)

F2(ωx, ωy) = eı(d+1/2)(ωx+ωy)F1(ωx, ωy).



Different kinds of interpolation functions may be considered, for
instance separable functions of the form s(x, y) = χ(x)χ(y). The
two prefilters are then separable with impulse responses γχ,ψ0(p)
γχ,ψ0(q) and γχ,ψH

0
(p)γχ,ψH

0
(q), respectively. A possible choice

for χ is the Shannon-Nyquist interpolation function, χ(t) =
sinc(πt), which allows ideal digital-to-analog conversion of a band-
limited signal.

3.2. Direction extraction in the different subbands

In order to better extract the local directions present in the image,
it is useful to introduce some linear combinations of the primal
and dual subbands. To do so, we define the analytic (resp. anti-
analytic) wavelets as

ψam(t) =
1√
2

(ψm(t) + ı ψH
m(t)), (13)

(resp. ψām(t) =
1√
2

(ψm(t)− ı ψH
m(t)). (14)

Let us now calculate the tensor product of two analytic wavelets
ψam and ψam′ . More precisely, we are interested in the real part of
this tensor product:

Ψa
m,m′(x, y) = Re{ψam(x)ψam′(y)}. (15)

For (m,m′) ∈ {1, . . . ,M − 1}2, the Fourier transform of this
function is equal to

bΨa
m,m′(ωx, ωy) =
 bψm(ωx) bψm′(ωy) if sign(ωx) = sign(ωy),

0 if sign(ωx) 6= sign(ωy).
(16)

As illustrated in Fig. 1, this function allows us to extract the “di-
rections” falling in the first/third quadrant of the frequency plane.
In the same way, the real part of the tensor product of an analytic
wavelet and an anti-analytic one is denoted by Ψā

m,m′ . This func-
tion allows us to select frequency components which are localized
in the second/fourth quadrant of the frequency plane. This corre-
sponds to “opposite” directions to those obtained with Ψa

m,m′ .

Fig. 1. 3D Plots of wavelets Ψā
2,1 (left) and Ψa

2,1 (right).

At a given resolution level j, for each subband (m,m′) with
m 6= 0 and m′ 6= 0, the directional analysis is achieved by com-
puting the coefficients:

dj,m,m′ [k, l] =〈f(x, y),
1

M j
Ψā
m,m′(

x

M j
− k, y

M j
− l)〉,

dH
j,m,m′ [k, l] =〈f(x, y),

1

M j
Ψa
m,m′(

x

M j
− k, y

M j
− l)〉.

According to Eqs. (13), (15), and (14), we have for all (m,m′) ∈
{1, . . . ,M − 1}2,

dj,m,m′ [k, l] =
1√
2

(cj,m,m′ [k, l] + cHj,m,m′ [k, l]), (17)

dH
j,m,m′ [k, l] =

1√
2

(cj,m,m′ [k, l]− cHj,m,m′ [k, l]). (18)

Note that Relations (16) is not valid for horizontal or vertical low-
pass subbands such that m = 0 or m′ = 0. The corresponding
coefficients are left unchanged.

4. OPTIMAL RECONSTRUCTION

Let us denote by f the vector of image samples. Besides, we de-
note by c the vector of coefficients generated by the primal M -
band decomposition and by cH the vector of coefficients produced
by the dual one. The linear combination of the subbands described
in Section 3.2 is omitted in the subsequent analysis, since we have
seen that this post-processing reduces to a trivial 2 × 2 isometry.
Hence, the global decomposition operator is

D : f 7→
„

c
cH

«
=

„
D1f
D2f

«
(19)

where D1 = U1F1 and D2 = U2F2, F1 and F2 being the pre-
filtering operations described in Section 3.1 and U1 and U2 being
the two considered orthogonal M -band wavelet decompositions.
Then, the following results can be proved:

Proposition 2 Assume that (s(x − k, y − l))(k,l)∈Z2 is an or-
thonormal family of L2(R2). Provided that there exists
(As, Bs, Aψ0) ∈ (R∗+)3 such that, for (almost) all (ωx, ωy) ∈
[−π, π[2,

|bs(ωx, ωy)| ≥ As, | bψ0(ωx)| ≥ Aψ0X

(p,q)6=(0,0)

|bs(ωx + 2pπ, ωy + 2qπ)|2 ≤ Bs < A2
sA

4
ψ0

D is a frame operator. The “dual” frame reconstruction operator1

is given by:

f = (F1
†F1 + F2

†F2)−1 (F1
†U1

−1c + F2
†U2

−1cH), (20)

where T† designates the adjoint of an operator T.

Note that the assumptions on s are obviously satisfied by the
Shannon-Nyquist interpolation function. Although other recon-
structions of f from (c, cH) are possible, Formula (20) minimizes
the impact of possible errors in the computation of the wavelet
coefficients. For example, these errors may arise in the estima-
tion procedures when a denoising application is considered. It
is worth pointing out that Eq. (20) is not difficult to implement
since U1

−1 and U2
−1 are the inverse M -band wavelet trans-

forms and F1
†, F2

† and (F1
†F1 + F2

†F2)−1 correspond to
filtering with frequency responses F ∗1 (ωx, ωy), F ∗2 (ωx, ωy) and
(|F1(ωx, ωy)|2 + |F2(ωx, ωy)|2)−1, respectively.

1Here “dual” is meant in the sense of the frame theory, which differs
from the meaning given in the rest of the paper.



5. APPLICATION TO DENOISING

A denoising example is considered to illustrate the benefit of the
proposed decompositions. The 512 × 512 8-bit Barbara image is
corrupted by an additive zero-mean white Gaussian noise which
variance is assumed to be known. The noisy image is decom-
posed via an M -band Discrete Wavelet Transform (DWT) and a
Dual-Tree M -band transform (DTT) in the 2, 3 and 4-band cases.
For each decomposition, the number of decomposition levels has
been fixed so as to get approximation images having roughly the
same size at the coarsest resolution. As the filters corresponding
to the dual decomposition are not FIR when the filters of the pri-
mal decomposition are FIR, frequency domain implementations of
the DWT and DTT have been adopted. Different wavelet families
have been tested, the provided results corresponding to the use of
Meyer’s wavelets [18]. The obtained SNR’s (in dB) are listed in
Tab. 1.

SURE NB Biv Visu
DWT M = 2 11.81 13.11 12.97 8.46
DWT M = 3 11.88 13.18 13.04 9.43
DWT M = 4 12.32 13.21 13.09 9.44
DTT M = 2 12.56 13.38 13.46 9.06
DTT M = 3 12.62 13.50 13.70 10.17
DTT M = 4 13.06 13.60 13.88 10.53

Table 1. Denoising results for an initial SNR of 5.2 dB. The con-
sidered estimators are SureShrink (SURE) [19]), Neighblock [20]
(NB), Bivariate Shrinkage [21] (Biv) and Visushrink (Visu).

First, we observe for this image that, by increasing the number
of bandsM , the denoising results are improved in all cases both for
the DWT and the DTT. Furthermore, the DTT leads to a significant
improvement of the denoising performance compared to the DWT.

Fig. 2 also illustrates that, compared with other decomposi-
tions, the DTT with M = 4 leads to sharper visual results and
reduced artifacts.

6. CONCLUSIONS

We have shown that M -band dual tree transforms are interesting
tools for 2D processing provided that an appropriate pre-filtering is
applied, and that some attention is paid to the reconstruction stage.
Our experimental results have put emphasis on denoising problems
but, due to the directional features which can be obtained with
these decompositions, applications to image analysis problems can
also be addressed.
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