AUTOMATIC BLOB FITTING IN COMPREHENSIVE TWO-DIMENSIONAL GAS
CHROMATOGRAPHY IMAGES

B. Cels&), Stéphane Bré&3 F. Adan{’, F. Bertoncin{, L. Duvaf?

(1) IFP, Technology, Computer Science and Applieathid Division, BP3, 69390 Vernaison, France
(2) IFP, Technology, Computer Science and Applieathd Division, 92852 Rueil-Malmaison, France
(3) LIRIS, UMR 5205 CNRS/INSA de Lyon/Universitédtide Bernard, 69000 Lyon, France
(4) IFP, Physics and Analysis Division, BP3, 693@Jnaison, France

ABSTRACT

Two-dimensional gas chromatography is a recent : o st olum outel)
technology which is particularly efficient for dééal 2
molecular analysis. However, due to the noveltytloé

method and the lack of automated analysis tools, U A —

quantitative data processing is often performed uaky
Hence, results are strongly user-dependent, timswuing
and, consequently, relatively inaccurate In thipgra we

3D plot

extend conventional techniques for signal analylsis
utilizing specific characteristics of chromatograpldata

Raw 2D chromatogram

and by developing new methods for estimating the fatsscond colmnellict ¥
quantitative contribution of chemical regions frothe o = fs"t
produced images. Data-driven information is regge¥rom N 5 2D colour plot
chemical quantitative analysis based on SavitzkiaGo Pt TP 7 3. Visualization
automatic peaks location determination, which iases gl W
both the processing speed and the analysis efigi@md /f ‘H‘“‘
improves our confidence in experimental repeatgbili ,%; o Second dimension chromstograms
2 stacked side by side

1. INTRODUCTION Figure 1: Generation and visualization of GCxGCdma
Comprehensive two-dimensional gas chromatography I
(GCxGC) is a promising new technology to unravel 10 ‘ ‘ — W ‘ ; ‘ ]
complex mixtures such as petroleum samples [17], IfiL ol

GCxGC, the entire chemical sample is submitted to two
one-dimensional GC separations involving different
properties of analytes such as volatilitye( separation
according to boiling points) and polaritig. the class of
compounds). The separation is achieved using tmuts
with different selectivities connected togetherotigh a
modulator [11] that traps, focuses and re-injeetsoglically
(each modulation periodypically lasting betweert and 10

s) the effluent from the first to the second colundm
appropriate column association results in highlganized 2t
2D chromatograms with several thousands of peak&hw
are arranged in the form of bands [11].

Detection occurs at the outlet of the second colamd is o I R R TR -
recorded as a function of the elution time. The 2D Time 1% . i

chromatogram consists into slices (as wide as th
modulation period) of the raw data which are stdckiele
by side. The different steps of a GCxGC analysis ar
presented on Figure_ 1 (cf. [3]). Figure 2 re_presehe _2D 2. GCxGC Analysis
chromatogram obtained for the separation of nitnoge
compounds contained into a middle distillate sample
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Figure 2: GCxGC image (2D chromatogram) for the
separation of nitrogen compounds.

In the literature, several approaches are repdagmbrform
peak quantification in GCxGC. The most common one
integrates all individual second-dimension peakstBans



of conventional integration algorithms and, nextms all
peak areas belonging to one 2D peak [7], [1]. The of
processing is generally performed either by using t
software programs,e. using conventional 1D GC software
programs for peak integration and another prograrttfe
subsequent combination of peak contributions.

In a second approach,
(corresponding to non chemically significant backgrd
variations) is subtracted, and subsequently thirmemsional
peak volumes are calculated by means of imaging
procedures [13]. There is an on-going debate onthehne
this approach can also be applied to the quantificaof
analytes in complex samples with little or not stmed
chromatograms. In theses samples, the base plaretion
may fail, resulting in illogical negative peakseas or
volumes.

There exists three generic types of applications in
chromatography [17].

The most common type of application is based on
converting retention times into peak identities dhe
corresponding peaks areas into amounts
concentrations. The desired actual informationhis t
concentrations of a limited number of prespecified
components. This strategy is usually referred to as
"target-compound analysis".

In the second type of application, there is eithatrthe
possibility or not the need to identify all indivdl
peaks. Visualizing a limited number of groups of
analytes €.g. acids, ketones, phtalate esters, aromatic
hydrocarbons) in a sample of largely unknown
composition is the main aspect of interest. Instefd
"component groups”, the denomination "pseudo-
components” is also used. Pseudo-components ofte
have structural properties in common, such as Bpeci
groups, an identical number of aromatics rings, a
specific configuration of double bonds, etc. Sefiana

of the samples into individual component groups
provides valuable information.

The third type of application ("non target analysis
performed to obtain an overview of the sample's
constituents. In other words, an attempt is made to
identify "all peaks" above a certain signal-to-meoiatio

in the chromatogram.

or

The present work presents techniques for the finst
applications. Classical data processing stepshese kind
of application are [12]df. Figure 3) :

background or base plane removal.

blob detection that is the process of aggregatingters
of pixels that form distinct peaks. This operati@n
generally performed automatically using a previgusl
generated template.€. a list of polygonal zones, each
one encompassing several peaks).
includes metadata such as compound names.
template matching that is the process of movinffisbi
the corner of the polygonal zone to adapt themheo t
new analysis.

This template

[17] describes main requirements for these type of
applications. In particular, it focuses on quatitia
detection and group identification. Therefore thipe of
application  requires  group-wise integration and
quantification methods.

first a so-called base planeThe template matching step is crucial. It is ofteser-

dependent. Hence, a peak detection algorithm iggsed in
the present paper to automate the template matcdiem
and to reduce the analysis' user-dependency. Beddobs
are related to the presence of peaks, the main dflebe
algorithm is to find peaks inside blobs and therfittdolob

frontiers to the start or the stop of each peakhis paper,
we provide then a method to:

Load a pattern on an new analysis,

Detect peaks in each column of the image,

Fit blobs with respect to the start and stop ohgaeak.
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Figure 3: GCxGC data processing steps.

The paper is organized as follows:

Section 2 presents the peak detection algorithm
developed. The use of high-order derivatives was
shown to be very efficient for peak finding. Howeve
since the noise is amplified by derivative comgatat

we apply the Stavitzky—Golay [14] smoother. This
strategy allows noise removal without loosing valea
information.

Section 3 details the algorithm used to fit blobs t
chemically related compounds.

Section 4 provides results obtained from real dakee
use of automatic blob fitting considerably improvls
results. All these features are implemented in an
industrial software hameelolychrom

3. PEAK DETECTION ALGORITHM

Several deconvolution techniques have been dewtlége
chromatography. They rely on the assumption tha& th
underlying individual peak profiles (intermingledyithin
the gross chromatographic signal can be descriexaigh



mathematical peaks models. This assumption hagrdi&wn
increased interest in the development of improveakp
models ([15], [8], [10], [9]).

Peak detection algorithms often have difficultiesletecting

(cf. Figure 7). Peak does not match with root orstfi
derivative. Complex integration is then requireddietect
peak.

The second algorithm is more sensitive than ths éine but

the presence of more than one peak when severatequire a more complex parameter selection andduni

compounds coelute, yielding shoulders on main péis
[4]). To detect peaks, derivatives of the secondedision
signal are inspected. The n-order derivatives araputed
through the well-known Stavitzky—Golay (SG) alglnit
[14]. This technique determines smoothed derivative the
chromatographic signal based on least-squares @oliah
fitting, to compensate for the effect of noise alfigation,
while preserving the peak’s shape.

If we assume peaks as a approximately Gaussian

derivatives of the signal can be used as follows:

« Peak extrema correspond to the root of the first
derivative.

e Start and Stop times of the peak correspond tc rait
the first, second and third derivative.

e Peak extrema correspond to minima of the second
derivative

* Peak extrema correspond to a root of the third
derivatives.

The peak detection algorithm is based on root figdn the
first and third derivative and negative regiongha second
derivative. It is similar to the algorithm propoded[16].

In the case of weak interference of elution peaksHigure
4), a peak is detected at time t, when followingstraints
are fulfilled:

1. The first derivative is close to zero. It shoultrespond
to a sign change from negative to positive regions;

2. The second derivative must be a minimum (negatie);
3. The value of signal must be superior to a tholkekh

The start time of a peak (respectively the stopelins
detected a time t which corresponds to one roaherfirst
derivative before (respectively after) the maximomthe
peak. Figure 6 presents an example of peaks dateictia
real signal a exhibiting partial co-elution of peakt is
obvious that the peaks detection is rather accurate

In the case of strong interference of elution pgaks-igure
5, bottom left); there are no roots in the firstridative
between two peaks (figure in the left). A peak étedted at
time t, when following constraints are fulfilled:

1. The third derivative is close to zero. It shoo@respond
to a sign change from negative to positive regions;

2. The second derivative must be a minimum (negatiwe);
3. The value of signal must be superior to a tholkesh

The time start of a peak (respectively time endjasected
at time t which corresponds to two roots on thedthi
derivative before (respectively after) the maximomthe
peak.

Figure 8 shows an example of strong co-elutionhis case,
simple integration fails to detect properly indivad peaks
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Figure 4: Use of derivative in the case of paxiaelution
(top left : signal, bottom left : first derivativigp right :
second derivative, bottom right : third derivativejyst and
second derivatives achieve to detect individuakpea
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Figure 5: Use of derivative in the case of stroaglution
(top left : signal, bottom left : first derivativegp right :
second derivative, bottom right : third derivativ€hird
derivative must be used in order to detect peaks.
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Figure 6: Example of detected peaks (red stargspond to
start time, green stars correspond to stop times stars
correspond to peaks)

Figure 7: Strong co-elution : peaks are not detebte
simple integration.

Figure 8: Strong co-elution : peaks are succegstigtected
by more complex integration procedure.

4.BLOBFITTING
If start time and stop times of each peak are knahe

following algorithm is implemented in order to fiikob.

For each blob :

1. Determine the intersection between each colufmie
image and the blob; let P be this point.

2. Find the nearest peak to P;

3. If P is below the peak, move it down toward tiearest

end of peak;

4. If P is above the peaks, move it up toward #mrest end

of peak;

For instance, Figure 9-left displays blobs (red)pddtained
manually from well-separated peaks. Figure 9-right
represents the contour plot for the same blobsmdxiaafter
automatic fitting leading to more accurate results.

The same experience is carried out within a middle
distillate analysis (cf. Figure 10). This figureepents peaks
obtained by the previous algorithm. Blob locatiggpe@ars

as not accurate (e.g. frontier points do not cpoged to
peak starts or peak stops). Figure 11 shows newsblo
location using automatic blob fitting. Obviouslyetter-
defined blobs have been successfully obtained witheer
action.
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Figure 9: Blobs contour plots without (left) anétw(right)
automatic fitting for individual peaks.
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Figure 10: Blobs contour plots (manually determipéar
middle distillate.
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Figure 11: Blobs contour plots after automatidrfitfor

middle distillate.

4. RESULTS

Quantitative experiments have been performed wita d
obtained for the analysis of nitrogen compoundmiddle
distillates (typical 2D-chromatogram reported igute 2).
In order to determine the repeatability of the pax; five
replicate experiments have been carried out. Thgsst
dispersion of blob areas was measured using th#eStg
test with a confidence level of 99% by:

Err =100*403* o/ u

with o denoting the standard deviation of the blob prit$

area.

)

Figure 12 gathers results manually obtained. Figl®e
shows results obtained after automatic fitting. Wfitt the

the statistics dispersiorasw
measured as 25%. Thanks to the automated fittingess,

it was reduced to 15%, which is a significant gap f
performing routine type analysis in industrial |adiories.

automated blob fitting,

1 6936132
2 2632.8263
3 4430.6724
4 43713873
5 2952.2289)
6 32360866
8 1259.66}
9 25335911
10 2334.2034
11 1453.451f
12 4746.8259
13 5895.684
14 4046.6803
16 4056626
17 792.702}
18 6014.4004
19 9649.6001
20 89135894
24 370.4966
26 297.7412)
21 1234.7348
28 2886.1509
22 911.9924
£ 1738.799
35 310281}

Mean

2869.4489)
782.2021f
1705.1357

27783217}

2313.468]
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2814.2043)
701143
2160.7415|

313.8031]

Mean

26185005 2672

4458.3786 4490
42692032 4361
31480083 3123
3606.3818) 3365
11131557 1198
2527.4731) 2501
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4550.3252 4638
58916733 5921
3074.0226] 4031
2163829 238
5422587 674
58348535 5883
97155641) 9659
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2807397 302
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28292772] 2852
8027238 824
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Standard Deviation
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Relative Standard Deviation

Figure 12:

Manual analysis for 5 replicates.

Conndence Level
Blob Number | 20802 20802 2 | 020802 3 | 020802 4 | 0208025 | wmean standard Deviation 99% Relative Standard Deviation
|~ [ Withfiting [ With fitting [ WWith fitting | With fitting | With fitting | With fitting | __ With fitting With fitting With fitting
1 3270229 3270229  327.0229  327.0229  327.0229 327 0 00
2 20491434 20491434 20491434 2049.1434  2049.1434 2049 000 0 00
3 39071145 395093 39510624 3857.1669 3907.1145 3915 38.92 150 38
a 38142792 36808984 38146387 35525053  3677.54 3708 11014 424 1.4
5 24622322 24987872 23909256 2636.7412 25020068 2498 89.46 244 138
6 27765712 27075659 28709512 2798.4047  2994.0766 2830 108.90 419 148
8 787.652 8213382 7882201 787652 787652 795 15.00 58 73
9 19248644 1533331 1727.2909 17180022 1855307 1752 150.11 578 3.0
10 16436372 14777004 14863356 15543509 15550096 1543 66.85 257 167
1 11027736 11027736 11027736 11027736 11027736 1103 000 0 00
12 30113286 39117861 39113286 39116787 39119992 3912 029 1 00
13 52225367 51530005 51530005 5222.5367 51532036 5181 38.05 147 28
14 32770673 33253886 33465749 3286.2045 32350641 3294 43.50 168 51
16 367006 367006 367006 367006 367006 37 000 0 00
17 3050539 3950539 3950539 3950539 3050539 395 000 0 00
18 54506448 5450.6448 5450.6448 5450.6448 5450.6448 5451 000 0 00
19 91873002 91994373 91873002 9187.3002 9187.3002 9190 543 21 02
20 87026044 87044868  8637.662 8744231 8499.4546 8658 96.35 371 43
24 3704966 340460 3455483  237.4559 2993495 319 52.09 201 629
26 2160155 2160155 2160155  267.6556 2160155 226 23.09 89 393
27 3030041 3168048 4169703  377.2603 4430711 389 47.59 183 411
28 8132213 7827550  809.9898  783.0572 8480357 807 26.89 104 128
32 26047855 23799080 18188017 2598.2624 25945693 2417 35382 1362 56.4
34 1357673 1195065 1357673 1357673 1357673 133 7.23 28 210
35 4795001 4350798 3946555  394.6555  394.6555 420 31.73 145 346
Mean 155

Figure 13: Automatic analysis for 5 replicates.
5. CONCLUSION

GCxGC is an efficient technology for the analysis o
complex mixture such as petroleum samples butilit st
suffers from its user-dependency involving time-saming

and inaccurate post-processing. To overcome this
limitation, an automatic fitting procedure of blbhsed on a
filtered derivation has been implemented. It iseoh®n
accurate determination of peak positions in signathe
second separation column. The proposed method was
demonstrated to be able to improve analysis repiisya
and to reduce the processing time. It is now impletad in

the industrial softwarolychrom

Additional experiments are conducted with activeitoar
methods in order to improve the fidelity and actemass of
image post -processing as far as possible.
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